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Abstract. On several proof-of-stake blockchains, agents engaged in val-
idating transactions can open a pool to which others can delegate their
stake in order to earn higher returns. We develop a model of staking pool
formation in the presence of malicious agents and establish existence and
uniqueness of equilibria. We then identify potential and risk of staking
pools. First, allowing for staking pools lowers blockchain security. Yet,
honest stake holders obtain higher returns. Second, by choosing welfare
optimal distribution rewards, staking pools prevent that malicious agents
receive large rewards. Third, when pool owners can freely distribute the
returns from validation to delegators, staking pools disrupt blockchain
operations, since malicious agents attract most delegators by offering
generous returns.
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1 Introduction

From both the financial side and the security side, there are reasons why a proof-
of-stake (PoS) blockchain may want to allow the formation of staking pools. With
staking pools, agents interested in validating transactions are allowed to open a
pool, such that others can delegate their stake for some time to it. For delegating
agents who are not interested in validating transactions, this can provide an
additional income on their token holdings. In turn, their stakes are blocked and
cannot be used for other purposes during the time of commitment. By agents
we mean all participants of the decentralized system who own some stake, which
usually takes the form of a native token. Agents interested in running a staking
pool could earn a higher income from their transaction validation activities.1

Ideally, such a staking system makes it more attractive to hold tokens, pro-
vides incentives for a sufficient number of agents to run staking pools and act
as transaction validators, and increases the share of honest agents, weighted by
the stakes they hold, involved in transaction validation. As every staking pool
acts as a validator, we occasionally use the word “validator” for a staking pool.

However, malicious agents also run staking pools and may thus enlarge the
share of the stake they control in transaction validation.2 This may undermine

1An agent that decides to run a pool and validate transactions is usually referred
as a node of a network.

2Our assumption that malicious agents always run staking pools is justified, since
if they do not, they do not affect blockchain functioning and thus cannot be considered
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the security of the blockchain and lead to a collapse of the protocol, as the
malicious agents take over.

We explore how such a system can be modeled and designed, so that it
operates beneficially for the decentralized consensus mechanism—i.e. by lowering
the share of malicious agents who disrupt the validation of transactions—and
for the ecosystem as a whole. The model invokes a measure of honest agents who
are interested in the returns from holding a stake (of tokens) in a PoS blockchain
and thus are also interested in the proper functioning of the blockchain. An agent
is honest if s/he is prepared to run the software for validation, as required by
the system. Otherwise, honest agents choose actions to maximize their expected
returns. The PoS protocol that we consider in this paper perfectly mimics how
the proof-of-work (PoW) protocol works. The PoW protocol chooses the next
block writer according to who finds the nonce that satisfies certain conditions,
that is, the probability that the next writer is chosen proportionally to his/her
hash rate. Similarly, in the PoS protocol, the next writer of the block is chosen
proportionally to his/her stake size. In the PoW protocols, the costs are typically
assumed to be different across agents, as they depend on electricity, hardware,
and maintenance costs. In the PoS protocol, we have a similar situation, except
for electricity costs. Agents have different costs in participating in transaction
validation, as availability of appropriate computer software and hardware, speed
and bandwidth of the internet, the knowledge of how to run a secure validation
node, and opportunity costs to engage in validation activities(that is, costs of not
being able to use tokens for other purposes) differ across them. The difference
between PoW and PoS protocol pools is the following. In the former, the costs
are incurred by all pool members, and therefore the rewards are distributed
proportionally. In the latter, the costs are incurred only by the pool runner,
while the rest—the delegators—incur no cost. In this paper, we examine the
simplest reward distribution, where the pool runner keeps some fraction of the
rewards and distributes the rest to the delegators proportionally.

There is a measure of malicious agents who are only interested in disrupting
the blockchain, and therefore, their costs are ignored by the designer.

A Blockchain Designer aims at maximizing the chance that the blockchain is
working (maximizing blockchain security), which will be captured by maximizing
the number of honest validators. We will also consider an alternative objective
where the Blockchain Designer trades off the probability that the blockchain is
running correctly with the costs for all honest agents of validating transactions.
This is a standard economic welfare criterion. Two further aspects can be im-
portant for a Blockchain Designer: Reducing the rewards for malicious agents,
as this decreases their future influence and distributing the rewards to validators
as equally as possible.

The Blockchain Designer has two basic options when designing the market
for staking pools. First, s/he can fix the return distribution between the pool
owner and the pool delegators. We call this “return fixing”. Second, s/he can

malicious. If they delegate their stakes, they act like honest delegators and thus again
are not malicious in any way.
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allow competition of pool runners regarding how the returns from transaction
validation are shared between the pool owner and the pool delegators. This is
called “return competition”.

We model the ensuing interaction as a three-stage game. In the first stage,
agents decide whether (i) to open a staking pool, (ii) to delegate their stake to
some pool or (iii) to abstain from validation activities. Setting up pools for val-
idating transactions is costly, and these costs may differ between agents. In the
second stage, either the Blockchain Designer determines the shares uniformly for
all running pools (return fixing) or pool owners determine how returns should be
shared between pool owners and delegators (return competition). In the third
stage, transactions are validated and, depending on the share of stakes con-
trolled by malicious agents, validation either works properly or the blockchain
is disrupted.

Our main insights start from the observation that honest agents with high
costs to set-up a node as a validator may want to delegate their stake to other
pool owners, while honest agents with low costs may want to open their own
pool. Malicious agents always open a pool, as this increases their chances to
disrupt the blockchain.

We establish existence and uniqueness of equilibria of the stake pool forma-
tion game with fixed return distribution between pool owners and delegators and
show that they are of the threshold type. We show next that there exists a unique
sharing rule of the returns from validation between delegators and pool owners
that maximizes the probability that the blockchain operates correctly and we do
the same for maximizing welfare of honest agents when costs of running staking
pools are taken into account in addition to blockchain security.

Subsequently, we identify the potential and risk of staking pools. Staking
pools can never increase current blockchain security over a system in which no
such pools are allowed. The reason is as follows. Without staking pools, a share
of honest agents participates in validating transactions, as the additional reward
is higher than the costs. With staking pools and if the returns are shared with
the validators, the return to pool owners declines, as the average rewards from
validating transactions is given. Hence, less honest agents are willing to open
staking pools, so that malicious agents will control a larger share of stakes in
validating transactions 3.

Yet, by optimally choosing the distribution of the validation returns to dele-
gators, the allocation of rewards to honest stakes involved in validation increases,
which may be beneficial for subsequent blockchain operations. We show how re-
turn splitting between pool owners and delegators has to be determined in order
to minimize the rewards to malicious agents.

3The return splitting cannot be strictly enforced by the protocol (designer) itself,
but should rather be a recommendation. Therefore, if some pool owner publicly offers
more rewards to delegators than is recommended, it should be a signal that this pool
owner is not honest.
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When pool owners can freely distribute the returns from validation to dele-
gators, staking pools decrease blockchain security, since malicious agents attract
delegators by distributing most of the returns to them.

We stress that our model is designed for many and small staking pools as
this scenario is the ultimate goal of decentralization that should be achieved
with a blockchain. On current blockchains, we observe also constellations with
large staking pools, like LIDO4 who hold a huge (above 25%) share of stakes on
the largest PoS blockchain Ethereum.

The paper is organized as follows. In the next section, we discuss the related
literature. In particular, literature motivating the formation of staking pools
in PoS blockchains is reviewed. In Section 3, we introduce the model and pre-
liminaries. In Section 4, we analyze the equilibria of the fixed return game. In
Section 5, we discuss designs for staking rewards that maximize security. In Sec-
tion 6, we analyze a return competition game, where pool owners individually
decide on the reward sharing scheme. In Section 7, we study an extension of our
basic model by considering endogenous rewards. Section 8 concludes.

2 Related Literature

Staking Pools: Many blockchains have already implemented staking or will im-
plement it in the near future. Such examples include, but are not limited to
Cardano ([12]), Solana ([15]), Polkadot ([14]), Tezos ([9]) and Concordium. All
these allow staking pools in which agents who do not run their own staking pool
will be able to delegate their stake to an existing pool and benefit from rewards.
By delegation, agents are indirectly involved in block proposal and validation,
via their stake.

[4] study staking pools among honest agents from an interesting mechanism
design perspective. Their reward scheme ensures that a desired number of staking
pools is achieved while each pool has approximately the same amount of stake
and low-cost agents are running the pools. The reward scheme ensures that
reporting the true costs is the dominant strategy. Our paper is complementary
as we focus on the design of staking pools in the presence of malicious agents
who want to disrupt the blockchain and thus have quite different objectives than
honest agents. We examine on how such staking pools affect blockchain security,
how security risks can be alleviated and how distribution of rewards to malicious
agents can be limited. Our mechanism is also simpler to implement, as there is no
communication between the designer and pool runners, and therefore, no need
for contracting, unlike in [4]. It is also intuitive to interpret for the agents, than
the generic mechanisms studied in there.

Model Assumptions: [11] study a voting game with two parties where voters
vote for one party or abstain. In their model, voters have individual costs that
are drawn according to some distribution function. Similarly to our paper, [11]
characterize equilibria of their game which take the form of so called “cut-off

4https://lido.fi

https://lido.fi
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thresholds”. They obtain a pair of thresholds, one for each party. Then, a citizen
whose cost is below the corresponding threshold will turn out and vote for his/her
party. If a citizen’s cost is above the threshold, s/he will abstain. Our model
works in a similar manner. We characterize threshold equilibria such that if the
cost for an individual is below that threshold, s/he will run a staking pool, and
delegate or abstain otherwise.

Similar to [11], [5] studies a voting game where citizens’ costs are drawn from
a uniform distribution. In our paper, we also consider a uniform distribution for
costs.

In our paper, we use continuum approach to model the measure of agents,
and thus follow the approach in [8] and [10], for instance. More concretely, agents
are modeled as infinitely small. The continuum approximates large communities
and it proves to be a tractable approach for the staking pool formation game.
The continuum model is thus a limiting case where the number of agents becomes
large and delegation to staking pools is done uniformly at random. In our model,
besides a pool ID (or address), no further information is provided to delegators.
From addresses or pool IDs, no information about pool owners can be inferred.
Hence, every pool has equal chances to be chosen by agents.5 In the basic version
of the model, delegation entails no cost.

3 Model

3.1 The General Set-up

There is a continuum of measure H of honest agents6 and there is a continuum of
measure M of malicious agents. The continua can be represented by intervals on
the real line, with length H and M , respectively. Working with a continuum of
agents models a blockchain with a large number of participants and approximates
the corresponding discrete model. While the continuum model is much more
tractable and yields simpler expressions, it requires more subtle interpretations,
though.

We assume H > M , so that, honest agents are in the majority. Each agent
(malicious or honest) has one unit of the stake.7

Each honest agent is identified by his/her cost level for validation of trans-
actions, respectively, for running a staking pool on the blockchain.8 Costs are
denoted by c and are heterogeneous across honest agents, as they depend on the

5In practice, delegators may have more information about pool owners, but they
remain anonymous. On the Cardano blockchain, for example, agents can find all staking
pools on pool.pm, which visualizes all staking pools with the pool IDs, the current stake
of the pools, the number of delegators and which blocks were produced by which staking
pool.

6These agents are called “rational” by other authors, e.g. in [3] and [10].
7As the total amount of stakes is infinite, all variables which are integrated over

the set of agents are averages in the continuum model.
8Costs include, for example, the costs for registering, running the software and

forwarding messages on transactions.

pool.pm
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availability of appropriate computer capital and human capital. Let the random
variable X correspond to the costs for honest agents. Specifically, the costs for
honest agents are distributed according to the atomless density function f(c)
defined on [0, T ). Note that the support interval can be R+, that is, T can be
equal to ∞. The corresponding cumulative distribution function is denoted by
F (c). Malicious agents are of the Byzantine type and do not care about the costs
and returns of running a pool. Hence, we set their costs to zero.

There is also a reward R ∈ R+, paid for creating the next block9. The agents’
types are private information. As assumed above all honest and malicious agents
have the same amount of stakes, equal to one unit. There is also a Blockchain De-
signer. The blockchain is assumed to be functioning better if more of validators
are honest.

3.2 Objectives

The Blockchain Designer and the two types of agents have the following general
objectives:

– Maximize the chance that the blockchain is working (maximizing blockchain
security), which will be captured by a maximization of the number of honest
validators (Blockchain Designer).

– Maximize expected reward minus cost (Honest Agents).
– Maximize the measure of stakes delegated to them (Malicious Agents).

We will formally specify the manifestation of these objectives later. As to
the Blockchain Designer, we will consider an alternative objective where s/he
trades-off the probability that the blockchain is running correctly with the costs
for all honest agents to validate transactions. While we consider maximizing
blockchain security as the most important objective, arguably one could also
consider a standard economic welfare criterion as a guiding principle for the
Blockchain Designer.

Two further aspects can be important for a Blockchain Designer. First, s/he
may aim at minimizing the rewards received by malicious agents, as this de-
creases their future influence. Second, the Blockchain Designer may want to
distribute rewards to validators as equally as possible, which is an original moti-
vation of staking. We will discuss to which extent these aspects materialize when
we present our results.

3.3 Staking Pool Formation Game

We consider the following game, which consists of three stages:

Stage 1: Agents decide either to form a staking pool or not (both honest and
malicious). Agents who decide to become a pool owner obtain an identifica-
tion number, denoted by i.

9In some contexts it is called mining reward.
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Stage 2: Agents who did not register for a staking pool decide whether to
delegate their stake to some staking pool or to remain idle.
Stage 3: The blockchain runs, validation takes place (or not), and rewards
are distributed.

If an agent i forms a staking pool, we denote by si the amount of stakes
s/he is receiving. We also denote by P the measure of honest agents who form
a staking pool. D and I denote the measure of honest agents who delegate their
stakes or stay idle, respectively. We have H = P +D + I.

Our main assumption for this game is that delegators distribute themselves
evenly across all possible pools. The rationale is that the type of a pool owner is
private information, and for delegators, pool owners are all alike. Hence, invoking
measure consistency, this assumption implies

si =
D

P +M
,∀i.

We note that all pools obtain the same amount of delegated stakes and thus
we write s for si in the following. The total size of the pool—stakes of the pool
owner and delegated stakes—is then s+ 1. We note that (s+ 1)(P +M) + I =
D + P +M + I = M +H.

The payoffs are determined as follows: The next validator10 is chosen among
the available pools proportionally to the pool size. This particular rule is already
implemented in major PoS protocols (e.g., see [12]), as it perfectly replicates the
PoW protocol, where probability for the next leader (in our case next validator
who writes the block) is proportional to computing powers. Such a system has
the advantage that splitting and pooling of the stakeholders does not increase
the chances to be chosen as a next validator as the expected return is unaffected
by such strategies.

The reward for the next block is given by an amount R. Since all pools
have the same size, the return distribution is a uniform distribution with density

1
P+M . Hence, the individual reward a pool expects to receive is r = R

P+M . Since
we have a continuum model, we note that both the individual return for an
individual and the cost of running a pool have zero weight in the average return
R and the average amount of costs, respectively. Yet for an agent, only the
individual returns and costs matter.

The blockchain designer sets a parameter, denoted by λ, 0 < λ ≤ 1, which
determines how rewards have to split between pool owners and delegators. To
sum up, the individual expected rewards are as follows:

– A pool receives r = R
P+M .

– The pool owner obtains λ · r.
– An individual delegator obtains (1−λ)·r

s . The total amount given to the del-
egators in a pool is (1− λ) · r.

– An idle agent obtains 0.

10In blockchains, transaction validation is done by creating a new block.
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We measure the probability that the blockchain operates correctly by a function

Pc(·) : [0, T ]→ [0, 1],

that depends on the share of honest agents running staking pools, that is (weakly)
increasing as a function of this share, and which may reach probability one if a
sufficient share of honest agents is participating in validating transactions. Later
in this paper, we will study two different versions of this probability function
and reward schemes that depend on it. In the basic version of the staking pool
formation game, we assume that the returns are paid, no matter whether the
blockchain operates correctly or not. The motivation for this assumption is as
follows: Whether or not the blockchain operates correctly may not be imme-
diately detected or agents maybe able to sell their rewards immediately after
writing the next block. Hence, agents involved in validating transactions aim
at maximizing the immediate returns from these activities in such cases. The
Blockchain Designer is, of course, interested in how well the blockchain is func-
tioning. In Section 7, however, we make rewards dependent on the operation
of blockchains, that is, rewards are only distributed if the blockchain operates
correctly.

The main design parameter λ ∈ [0, 1] is a non-negative real number set by
the Blockchain Designer. A game with a payoff structure as above, together with
(H,M,R, F, λ), is called a “staking pool formation game” and is denoted by G.

4 Equilibrium Analysis

In this section, we analyze the equilibria of a staking pool formation game.

4.1 Equilibrium Concept

In a staking game with non-zero reward R, an honest agent will never stay
idle. The reason is that since delegation is free of cost and delegators earn some
reward, the expected payoff is positive for a delegator, whereas the payoff for
staying idle is zero. Only in the case λ = 1, agents would be indifferent between
delegation and staying idle. Hence, delegation weakly dominates staying idle and
so H = P +D.

In Section ??, we will consider the case where delegation comes at a small
fixed cost and so, staying idle will not be dominated in general. For tractability
we assume a tie-breaking rule. First, if an honest agent is indifferent between
delegating and staying idle, s/he will choose to delegate. This implies that when
there are no delegation costs, no agent remains idle.

We now proceed by focusing on equilibria of the threshold type. In particular,
we solve for the threshold equilibrium by looking at the agent with a specific cost
level c∗ at which this agent is indifferent between running a pool and delegating,
i.e., the expected utility from delegating is equal to the expected utility from
running a pool.
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An important remark is in order. If a threshold equilibrium exists, it is unique.
If a threshold equilibrium does not exist, we end up in a corner solution—either
no honest agent will run a pool or all honest agents will run a pool, and thus
there will be no delegation.

We introduce the following definition:

Definition 1 (Threshold Equilibrium). A cost level c∗ > 0 is called a “thresh-
old equilibrium” if an agent with cost c∗ is indifferent between running a staking
pool and delegating. Furthermore, all agents incurring a cost that is lower than
c∗ will run a staking pool, and all agents with a cost greater than c∗ will delegate.

In the threshold equilibrium we have P = F (c∗)H and D = (1− F (c∗))H.

4.2 Equilibrium Characterization

In the following we are looking for the equilibria, in which at least some fraction
of honest agents decide to run own pools. We characterize the equilibria of the
staking game:

Theorem 1. There exists a unique threshold equilibrium to the game G if and
only if

λ >
M

H +M
. (1)

Proof. First, we have to set up the indifference condition for an honest agent.
That is, we have to equate the expected utility from being a delegator with the
expected utility from running a pool. More precisely, the expected utility from
being a delegator is

(1− λ)r

s
,

which is the share (1− λ) of the reward r, divided by the number of delegators,
for the particular pool. Similarly, the expected utility from running a pool is

λr − c,

which is the share λ of the reward r, minus the cost c of the particular pool owner.
In the equilibrium point c∗, an honest agent is indifferent between delegating and
running a pool, that is, c∗ solves the indifference equation:

(1− λ)r

s
= λr − c∗. (2)

From the equilibrium definition, we know that P = F (c∗)H and D = (1 −
F (c∗))H. Plugging in these values in (2) and simplifying, we obtain:

(1− λ)R

(1− F (c∗))H
= λ

R

F (c∗)H +M
− c∗. (3)
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We reorder equation (3) as follows:

c∗ =
λR

F (c∗)H +M
− (1− λ)R

(1− F (c∗))H
. (4)

We note that the left hand side (LHS) of equation (4) is obviously increasing in
c∗, while the right hand side (RHS) is decreasing in c∗. Indeed, the derivative of
the RHS with respect to c∗ is

− λRF ′(c∗)H

(F (c∗)H +M)2
− (1− λ)RF ′(c∗)

(1− F (c∗))2H
< 0.

Since the LHS of (4) is increasing and is equal 0 for c∗ = 0, and the RHS is
decreasing in c∗, the necessary condition to have a solution to the equation is
that the RHS is positive for c∗ = 0. That is, we have the condition

λR

F (c∗)H +M
− (1− λ)R

(1− F (c∗))H
> 0,

which is, for c∗ = 0, equivalent to the condition in the theorem,

λ >
M

H +M
.

The indifference condition of the equilibrium of equation (4) to have an in-
ternal solution is obtained by taking c∗ = T . In this case, the LHS has to be
larger than the RHS, which always holds for λ < 1, as the RHS is equal to −∞.

To establish uniqueness, suppose that λ > M
H+M . As shown above, if we focus

on threshold equilibria, there exists a unique equilibrium characterized with the
cost level c∗. Suppose that an equilibrium exists which is not of the threshold
type. Without loss of generality, assume two cost levels c1 and c2 with c2 > c1,
with the following property. A agent with cost c2 will run a pool, while a agent
with c1 will delegate. Hence, for the first agent, it must hold that

λR

F (c∗)H +M
− c2 >

(1− λ)R

(1− F (c∗))H
,

while for the second agent, we must have the opposite inequality, that is,

λR

F (c∗)H +M
− c1 <

(1− λ)R

(1− F (c∗))H
.

Together, this implies that

c2 <
λR

F (c∗)H +M
− (1− λ)R

(1− F (c∗))H
< c1,

which contradicts the assumption c2 > c1. Hence, any equilibrium will be of
threshold type.
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Since all equilibria are of the threshold-type, we simply refer to threshold-
type equilibria as “equilibria”.

The interpretation of the lower bound condition on λ in the theorem is
straightforward. To have a positive measure of pools owned by honest agents,
the share of the reward for the pool owners should be higher than the share of
malicious agents in the whole system. As long as λ satisfies this condition, we
have a unique equilibrium of the game G. From the proof of Theorem 1, it is
straightforward to see that if λ = M

H+M , then the only solution to the indiffer-
ence condition is c∗ = 0 and hence, all honest agents will delegate and malicious
agents control all stakes. If λ < M

H+M , then there exists no equilibrium solution,
where a positive measure of honest agents run pools.

5 Maximal Blockchain Security

In this section, we use the framework developed in the previous sections to design
blockchains that maximize security.

We obtain the equilibrium solution of (3) for a given λ by simply solving for
c∗. We denote it by c∗(λ). The inverse function is denoted by λ(c∗), and can be
trivially found from (3). Namely,

λ(c∗) =
c∗ + R

(1−F (c∗))H

R
F (c∗)H+M + R

(1−F (c∗))H

. (5)

λ is a designer’s variable.
We assume in this section that the probability that the blockchain operates

correctly is given by:

Pc(c
∗) :=

P (c∗)

P (c∗) +M
.

That is, the probability that the next block consists of correct transactions is
equal to a share of honest pool runners. This is a simple formulation, reflecting
that the next block writer is chosen uniformly at random. However, our analysis
holds qualitatively for any probability function that is increasing in the share of
honest agents and may reach 1 if a sufficient share of honest agents is achieved.

The first goal of the designer is to maximize the share of honest agents
running pools, that is, to maximize P (c∗). The probability that the blockchain
is run correctly depends on P , which is increasing in c∗. Increasing λ has two
effects on the honest agents’ decision. First, it motivates an agent to run a pool,
as a greater share of the rewards is allocated to the owner of the pool. On the
other hand, since a higher λ motivates many agents to run pools, there are many
pools, and therefore, lower chances for each of them to win the reward. However,
we obtain the following result:

Proposition 1. The fraction of honest agents running a pool is maximized for
λ = 1.
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Proof. Note that the RHS of (4) is increasing in λ. By increasing λ, we have to
increase c∗ to have equality, as the RHS is decreasing in c∗. That is, if λ1 ≤ λ2,
then c∗(λ1) ≤ c∗(λ2). Taking the maximum value λ = 1 transforms equation (4)
into

c∗ =
R

F (c∗)H +M
. (6)

The solution to this equation maximizes the share of honest validators.

We note that by setting λ = 1, in the threshold equilibrium of game G, we do
replicate the levels of honest and malicious stakes involved in transaction vali-
dation which would arise in the simple game without delegation and no staking
pools. In this game, instead, honest agents are allowed to either validate trans-
actions or abstain. In such a game, the indifference condition of the threshold
equilibrium corresponds to c∗ = r, equivalent to λ = 1 in the pool formation
game. Yet, with λ = 1 and pool formation, all returns from validation are chan-
nelled to staking pool owners while delegators receive nothing. This is a concern
for the future evolution of the blockchain since stake holding may be more and
more concentrated on pool owners.

Note that the solution λ = 1 does not maximize social welfare, and does not
distribute the rewards on honest agents that have high costs of running a pool
either.

6 Return Competition

In this section, we reconsider the staking pool formation game. Instead of the
Blockchain Designer, we allow that pool runners choose both their own levels of
rewards and the rewards they want to distribute to delegators. A pool owner i
sets his/her own λi. This game is a variant of the game G studied so far in the
paper.

In the first part of this section, we allow free return competition, that is, pool
owner i can choose any λi ∈ [0, 1]. We denote this game by G0. Hence, the game
unfolds as follows:

Stage 1: Agents (both honest and malicious) either decide to form a staking
pool or not. Agents who decide to become a pool owner obtain an identifi-
cation number, denoted by i, and set λi.
Stage 2: Agents who did not register for a staking pool decide whether to
delegate their stake to some staking pool or to remain idle.
Stage 3: The blockchain runs, validation takes place (or not), and rewards
are distributed.

We obtain the following result:

Proposition 2. In any equilibrium of the game G0, malicious agents control all
stakes involved in transaction validation and the blockchain is disrupted.
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Proof. Suppose that there exists an equilibrium in which honest agents run stak-
ing pools. Since running such staking pools is costly and there is zero measure of
honest agents with zero costs, such an equilibrium necessarily must involve that
the minimal value of all offered values λi by staking pool owners, denoted by
λ̂, must be positive. Otherwise, honest agents are better off by delegating their
stakes. Note that the last statement holds, since an individual honest agent has
no influence on the probability that the blockchain operates correctly by his/her
decision whether to run a staking pool or to delegate,

However, every malicious agent has an incentive to deviate and to set a
lower value of λ̂ for his/her own staking pool in order to attract more delega-
tors, thereby making staking pools for honest agents unattractive. Hence, all
honest agents delegate. This is a contradiction that honest agents run staking
pools. Hence, in any equilibrium, malicious agents control all stakes involved in
transaction validation and the blockchain is disrupted..

In the second part of this section, agents are only allowed to choose their
corresponding λi from the interval [λ̄, 1], where λ̄ > M

H+M . We denote this game
by Gλ̄. Invoking standard Bertrand competition logic, we obtain the following
result in this case:

Proposition 3. The equilibrium of the extended game Gλ̄ is the same as the
equilibrium of game G.

Proof. First, we note that in the equilibrium, all malicious agents choose the
lowest possible level λ̄. If honest agents choose any λ that is strictly larger than
λ̄, then nothing is delegated to them. Therefore, they also choose the same λ̄.

That is, imposing a lower bound on λ also guarantees the same upper bound.
This adds to the robustness of the result obtained in Theorem 1 and offers a
way to implement the equilibrium solution. On a practical side, the blockchain
system does not need to force the agents to have the same level of rewards.
Rather, they reach it through rational play. Note that setting any lower bound
λ̄ ≤ M

H+M would result in the same (bad) equilibrium obtained in Proposition 2.

7 Endogenous Rewards

Throughout the paper, we assumed that rewards for writing the next block are
exogenously given and are equal to a constant number R, no matter what fraction
of honest agents runs pools and participates in the validation. In this section,
we assume that rewards are realized only if the blockchain functions correctly,
with probability one. This probability is calculated by the following formula:

Pc(c
∗) := min

[
1,

(
P

P +M
+ θ

)]
.

Here θ is a real number in [0, 1
2 ] that describes the tolerance of a system

regarding the share of malicious agents it can handle without compromising
network security.
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We say that full network security is achieved when

P

P +M
≥ 1− θ.

Typically, for example in Byzantine-fault-tolerant protocols, θ is about 1
3 in

many consensus protocols (see [13], [1], [6] [2] and [7]). Thus, in that case, if the
fraction of staking pools run by honest agents is at least 2

3 , then full security is
achieved.

Requiring the probability of the blockchain security to surpass the threshold
1 − θ imposes a threshold on the cost of pool running in the equilibrium. We
denote the corresponding game by Ge and the cost threshold by cθ. It is defined
by the following equation:

cθ := inf
c

F (c)H

F (c)H +M
≥ 1− θ. (7)

In this setting, to have a unique threshold equilibrium, we need

cθ <
λR

F (cθ)H +M
− (1− λ)R

(1− F (cθ))H
. (8)

We obtain a result similar to the one of Theorem 1:

Theorem 2. There exists a unique threshold equilibrium c∗ > cθ to the game
Ge if and only if

λ >
cθ

R (F (cθ)H +M)(1− F (cθ))H + F (cθ)H +M

H +M
. (9)

The proof is analogous to the proof of Theorem 1.
The results from the Section 6 on return competition are also translated

directly in this setting. In particular, if the agents are allowed to set any λ ∈ [0, 1]
as their own pool return, the blockchain security fails. We denote this game by
Ge0 . Formally, we obtain the following result:

Proposition 4. In any equilibrium of the game Ge0 no honest agent runs a pool
and the blockchain is disrupted.

The proof is analogous of the proof of Proposition 2 and exploits the fact that
individual honest agents have zero measure. Therefore, any unilateral deviation
by an agent does not affect the probability that the blockchain operates correctly.

8 Conclusion

In this paper, we initiated the study of the formation of staking pools from game-
theoretic and mechanism design perspectives. Our insights can help to design
reward distribution rules that improve the blockchain security and fairness of
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reward distribution. This study might open many further research avenues on
how staking pools can be designed optimally for blockchains. For instance, one
might introduce quantity constraints such as a leverage constraint on staking
pools which limits the share of delegators towards the pool owner. Whether
such a constraint further improves the security of the blockchain is left for future
research. One might also allow the history of staking and running staking pools
to play a role in dynamic versions of the game and thus, an agent’s reputation
to behave honestly may be taken into account in such staking pool formation
games. Future research can also extend our model to arbitrary distribution of
stakes across agents.
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