
Game-theoretic Randomness for Proof-of-Stake

Abstract. Many protocols in distributed computing rely on a source of random-
ness, usually called a random beacon, both for their applicability and security.
This is especially true for proof-of-stake blockchain protocols in which the next
miner or set of miners have to be chosen randomly and each party’s likelihood to
be selected is in proportion to their stake in the cryptocurrency. The chosen miner
is then allowed to add a block to the chain.
Current random beacons used in proof-of-stake protocols, such as Ouroboros and
Algorand, have two fundamental limitations: Either (i) they rely on pseudoran-
domness, e.g. assuming that the output of a hash function is uniform, which is an
unproven assumption, or (ii) they generate their randomness using a distributed
protocol in which several participants are required to submit random numbers
which are then used in the generation of a final random result. However, in this
case, there is no guarantee that the numbers provided by the parties are truly
random and there is no incentive for the parties to honestly generate uniform
randomness. Most random beacons have both limitations.
In this work, we provide a protocol for distributed generation of randomness. Our
protocol does not rely on pseudorandomness at all. Similar to some of the pre-
vious approaches, it uses random inputs by different participants to generate a
final random result. However, the crucial difference is that we provide a game-
theoretic guarantee showing that it is in everyone’s best interest to submit truly
uniform random numbers. Hence, our approach is the first to incentivize hon-
est behavior instead of just assuming it. Moreover, the approach is trustless and
generates unbiased random numbers. It is also tamper-proof and no party can
change the output or affect its distribution. Finally, it is designed with modular-
ity in mind and can be easily plugged into existing distributed protocols such as
proof-of-stake blockchains.

Keywords: Distributed Randomness · Proof-of-stake · Blockchain · Mechanism
Design

1 Introduction

Proof of Work. Bitcoin, the first blockchain protocol, was proposed by Satoshi Nakamoto
to achieve consensus in a decentralized peer-to-peer electronic payment system [15]. In
Bitcoin and many other cryptocurrencies, the miners are selected by a proof of work
(PoW) mechanism to add blocks of transactions to the public ledger, i.e. they have to
compete in solving a mathematical puzzle and each miner’s chance of adding the next
block is proportional to their computational (hash) power. Security guarantees are then
proven with the assumption that more than half of computational power is in the hands
of honest miners. Proof of work is known to be highly energy-inefficient [2] and also
prone to centralization due to large mining pools [3]. Currently, the three largest mining
pools have more than half of the Bitcoin mining power.
Proof of Stake [12]. Proof of Stake (PoS) is the main alternative consensus mechanism
proposed to replace PoW in blockchain protocols. In a PoS protocol, miners are chosen
randomly and each miner’s chance of being allowed to add the next block is often pro-
portional to their stake in the currency. Hence, instead of relying on the assumption that



2

a majority of the computational power on the network is owned by honest participants,
the security claims of proof-of-stake protocols rely on the assumption that a majority,
or a high percentage, of the stake is owned by honest participants. Despite their differ-
ences, all proof-of-stake protocols require a random beacon to randomly select the next
miners in an unpredictable manner.
Distributed Randomness. A random beacon is an ideal oracle used in a distributed
protocol, e.g. a proof-of-stake blockchain, that emits a fresh random number in prede-
termined intervals. Designing random beacons is an active research topic in the context
of distributed and decentralized computation [20, 18, 21, 13]. The desired properties of
a random beacon are as follows:

– Bias-resistance: The output should always be sampled according to a fixed under-
lying distribution δ, which is usually the uniform distribution. No party should be
able to bias the output or change the distribution δ.

– Unpredictability: No party should be able to predict the output before it is publi-
cized. Moreover, no party should even be able to have any extra information about
the output, other than the fact that it will be sampled from δ.

– Availability: Each execution of the beacon must successfully terminate and produce
a random value.

– Verifiability: Each execution of the beacon should provide a “proof” such that any
third parties who were not involved in the random beacon are able to verify both
the output and the fact that the random beacon executed successfully.

Reliable Participants. Almost all distributed randomness protocols have several partic-
ipants and create a random output based on random numbers submitted by participants
of the protocol. Usually, the final value is simply defined by the modular sum of all input
values by participants modulo some large number p, i.e. s :=

∑n
i=1 si (mod p). If the

protocol generates only a single random bit, then p = 2 and the modular sum is equiv-
alent to the xor operation. Using the summation formula above, if the input values of
different participants are chosen independently and if at least one of the participants
submits a truly uniform random value in the range [0, p−1], then the final output is also
a uniform random value. We call such a participant reliable. Note that it is enough to
have only one reliable participant for the final output to have the uniform distribution.
Therefore, the distributed randomness protocols typically assume that at least one of
the participants is reliable. We distinguish between reliable and honest participants.
Honest Participants. An honest participant is a participant who correctly follows the
protocol, e.g. submits their random number si in time. Distributed randomness proto-
cols often assume and require that a large proportion of participants are honest and
obey the communication rules to complete and produce final values. For example,
PBFT achieves byzantine agreement in a partially-synchronous network by requiring
that more than two-thirds of all participants be honest [7].
Commitment Schemes. Using the formula above for random number generation, since
the participants cannot broadcast their values in a distributed network in a perfectly si-
multaneous way, the last participant has an advantage and can dominate the final output.
The classical cryptographic primitive used to avoid such a scenario is a commitment
scheme. A commitment scheme runs in two phases: a commit phase and a reveal phase.
In the commit phase, instead of broadcasting the value si directly, each party pi broad-
casts h(si, ri), where h is a cryptographic hash function and ri is a randomly chosen
nonce. In the reveal phase, each party broadcasts the values of si and ri and everyone on



Game-theoretic Randomness for Proof-of-Stake 3

the network can verify that the broadcast values have the right hash hence the party has
not changed their choice si since the commit phase. However, a commitment scheme
does not ensure availability, since malicious parties might only commit but not reveal
their values.
PVSS. Publicly verifiable secret sharing (PVSS) is a powerful cryptographic tool to
ensure the revelation of values si even if some malicious parties stop participating in the
reveal phase of a commitment scheme [19]. PVSS adds a protection layer to traditional
secret sharing schemes in the presence of malicious participants. In a PVSS scheme,
a dealer is required to provide a non-interactive zero-knowledge proof (NIZK) along
with encrypted secret shares Ei(si) to guarantee the validity of secret shares. During
the reconstruction phase, a participant sends its secret share to other participants along
with a NIZK proof to guarantee the correctness of secret share. The NIZK proofs can
be verified by any party, including third parties who are not taking part in the PVSS
scheme.
RANDAO [1]. RANDAO is a family of smart contracts that produce random numbers.
Anyone can participate and submit a random value to contribute to the output. RAN-
DAO uses a commitment scheme. Compared to general distributed randomness proto-
cols based on distributed networks, RANDAO’s smart contracts run on a blockchain
with consensus and directly interact with the underlying cryptocurrency. Therefore,
RANDAO naturally enjoys the decentralized consensus provided by the blockchain pro-
tocol. Besides, economic incentives can be designed to promote honesty. Cheaters who
violate the rules are punished economically, e.g. by having their deposit confiscated. On
the other hand, honest participants are rewarded by the income generated from provid-
ing the random number generation service to external contracts. However, there is no
way to ensure bias-resistance and availability. A malicious party might choose not to re-
veal their value si as it might be beneficial to them to bias the output. So, if a party does
not reveal values, the whole random number generation process should be repeated, but
even this biases the output as a malicious party can choose not to reveal only when the
final result is not to their benefit in an external smart contract. Finally, RANDAO does
not incentivize reliability and assumes that a reliable party exists, without arguing why.
VDFs. Verifiable delay functions [6] can be used to ensure bias-resistance in distributed
randomness protocols. A VDF is a function whose evaluation takes at least some pre-
determined number of sequential steps, even with many parallel processors. Once the
evaluation is complete, it can provide a publicly verifiable proof for the evaluation re-
sult, which can also be checked by any third party efficiently.
VRFs. Verifiable random functions [14, 10] are widely used in PoS blockchain proto-
cols [11, 9]. A party can run a VRF locally, producing a pseudo-random output value
based on their secret key and random seed. The VRF also outputs a proof of the output
that can be verified by anyone with access to the party’s public key and random seed.
With the use of VRFs, malicious parties cannot predict who the future miners are before
the miners announce their identities themselves.
Algorand. Algorand [11] is a proof-of-stake blockchain protocol based on Byzantine
agreement. The random seed for its VRF is based on the VRF of the previous round.
While this guarantees most of the desired properties, a major drawback of this random-
ness beacon is that the generated numbers are not guaranteed to be uniform.
Ouroboros and Ouroboros Praos. Ouroboros [12] was the first provably secure proof-
of-stake blockchain protocol. It uses a publicly verifiable secret sharing scheme to gen-



4

erate a fresh random seed for each epoch. However, in this scheme the participants have
no incentive to submit a uniform random value. In other words, there is no incentive
to be reliable, but just to be honest. Ouroboros Praos [9] improves over Ouroboros to
be provably secure under a semi-synchronous setting. The random seed of Ouroboros
Praos is updated every epoch by applying a random oracle hash function to a concate-
nation of VRF outputs in the previous epoch. Similar to Algorand, the random numbers
are not guaranteed to be uniformly random, despite the fact that they are assumed to be
uniform in the security analysis.
Our Contribution. Our main contributions are as follows:

– First, we design a novel game-theoretic approach for randomness generation. We
call this an RIG (random integer generation) game. RIG efficiently produces a uni-
form random integer from an arbitrarily large interval. Moreover, we show that the
only equilibrium in an RIG is for all participants to choose their si uniformly at ran-
dom. In other words, our RIG ensures that the participants are incentivized not only
to be honest, but also to be reliable. This will alleviate the problems with the previ-
ous approaches and ensure that all desired properties of distributed randomness are
attained.

– We show that our RIG approach can be plugged into common randomness genera-
tion protocols with ease. In Section 4, we design protocols to implement RIG as a
random beacon on general proof-of-stake blockchains. We describe RIG protocols
based on commitment schemes and VDFs in Section 4.1 and RIG protocols based
on PVSS in Section 4.2.

– In Section 5, we discuss how RIG can be deployed with minor changes in particular
proof-of-stake protocols. We cover Algorand [11] and Ouroboros Praos [9].
Our protocols are the first to incentivize participants to be reliable and submit truly

uniform random numbers. In comparison, previous distributed randomness protocols
using commitment schemes and PVSS assume that there is at least one reliable par-
ticipant without incentivizing reliability. In other words, they only reward honesty but
assume both honesty and reliability. The reliability assumption is unfounded. Several
other randomness protocols, including Algorand and Ouroboros Praos, do not depend
on random inputs from participants at all, but instead use real-time data on blockchains
and cryptographic hash functions to generate pseudo-random numbers. This pseudo-
randomness is not guaranteed to be uniform. Hence, there is no guarantee that miners
get elected with probabilities proportional to their stake.

2 Preliminaries

2.1 Games and Equilibria

Probability Distributions. Given a finite set X = {x1, . . . , xm}, a probability distribu-
tion on X is a function δ : X → [0, 1] such that δ(x1) + · · · + δ(xm) = 1. We denote
the set of all probability distributions on X by ∆(X).
One-shot Games [17]. A one-shot game with n players is a tuple G = (S1, S2, . . . , Sn,
u1, u2, . . . , un) where:

– Each Si is a finite set of pure strategies for players i and S = S1 × S2 × · · · × Sn

is the set of all outcomes; and
– Each ui is a utility function of the form ui : S → R.



Game-theoretic Randomness for Proof-of-Stake 5

In a play of the game, each player i chooses one strategy si ∈ Si. The choices are
simultaneous and independent. Then each player i is paid a utility of ui(s1, s2, . . . , sn)
units.

Mixed Strategies [17]. A mixed strategy σi ∈ ∆(Si) for player i is a probability dis-
tribution over Si, that characterizes the probability of playing each pure strategy in Si.
A mixed strategy profile is a tuple σ = (σ1, σ2, . . . , σn) consisting of one mixed strat-
egy for each player. The expected utility ui(σ) of player i in a mixed strategy profile
σ is defined as ui(σ) = Esi∼σi [ui(s1, s2, . . . , sn)]. Intuitively, in a mixed strategy, the
player is not committing to a single pure strategy, but only to the probability of playing
each pure strategy.

Nash Equilibria [16]. A Nash Equilibrium of a game G is a mixed strategy profile σ,
such that no player has an incentive to change their mixed strategy σi, assuming they
are aware of the mixed strategies played by all the other players. Let σ−i be a tuple
consisting of all the mixed strategies in σ except σi. Formally, σ is a Nash equilibrium
if and only if for all σ̃i ∈ ∆(Si) we have ui(σ) ≥ ui(σ̃i, σ−i). A seminal result by Nash
is that every finite game G has a Nash equilibrium [16]. Nash equilibria are the central
concept of stability and self-enforceability for non-cooperative games [17], in which
each player maximizes their own utility, i.e. when a game is in a Nash equilibrium, no
party has an incentive to change their strategy and hence the game remains in the Nash
equilibrium.

In distributed randomness generation, especially for proof-of-stake protocols, we
aim to have a committee that plays a game whose output is our random number. Since
the players/parties are pseudonymous on a blockchain network and only participate
using their public keys, in our committee we might have multiple accounts that are ac-
tually controlled by the same person or are in an alliance. Therefore, we need a stronger
concept of equilibrium that does not assume a lack of cooperation between any pair of
players. Thus, we rely on strong and alliance-resistant equilibria as defined below.

Strong Nash Equilibria [4, 5]. A strong Nash equilibrium is a mixed strategy profile in
which no group of players have a way to cooperate and change their mixed strategies
such that the utility of every member of the group is increased. Formally, σ is a strong
Nash equilibrium if for any non-empty set P of players and any strategy profile σ̃P over
P , there exists a player p ∈ P such that up(σ) ≥ up(σ̃P , σ−P ). In strong equilibria,
the assumption is that the players cannot share or transfer their utilities, so a player
agrees to a change of strategies in the alliance P if and only if their own utility is
strictly increased. However, if the players can share and redistribute utilities, or if they
are indeed controlled by the same person, then a group is willing to defect as long as
their total utility increases, which leads to an even stronger notion of equilibrium:

Alliance-resistant Nash Equilibria [8]. An alliance-resistant Nash equilibrium is a
mixed strategy profile σ such that for any non-empty set P of players and any strat-
egy profile σ̃P , it holds that uP (σ) ≥ uP (σ̃P , σ−P ), where uP is the sum of utilities
of all member of P . In our setting, especially in PoS blockchain protocols, alliance-
resistant equilibria are the effective notion to justify stability and self-enforceability,
because a person with a large stake is likely to control multiple players in the randomly
selected committee and only care about the overall revenue.



6

2.2 Publicly Verifiable Secret Sharing

We follow [19] in our description of PVSS. In a PVSS scheme, a dealer D wants to
share a secret s with a group of n participants P1, P2, . . . , Pn. The goal is to have a
(t, n)-threshold scheme, i.e. any subset of t participants can collaborate to recover the
secret s, while any smaller subset of participants cannot recover the secret or obtain
any information about it. Moreover, anyone on the network, even those who are not
participating, should be able to verify that the dealer is acting honestly and following
the protocol.
Initialization. We assume that a multiplicative group Z∗

q and two generators g,G of
this group are selected using an appropriate public procedure. Here, q is a large prime
number and all calculations are done modulo q. Each participant Pi generates a non-
zero private key xi ∈ Z∗

q and announces yi = Gxi as their public key. Suppose the
secret to be shared is s, the dealer first chooses a random number r and publishes U =
s+ h(Gr), where h is a pre-selected cryptographic hash function. The dealer then runs
the main protocol below to distribute the shares that can reveal Gr. The main protocol
consists of two steps: (1) distribution, and (2) reconstruction, each of which has two
substeps.
Distribution. This consists of the following:

– Distribution of the shares. The dealer picks a random polynomial p of degree at
most t− 1 with coefficients in Zq of the form p(x) =

∑t−1
j=0 αj ·xj . Here, we have

α0 = Gr, i.e. the number r is encoded in the first coefficient of the polynomial
and every other αj is a random number from Zq . The dealer then publishes the
following:
• Commitment: Cj = gαj , for 0 ≤ j < t. This ensures that the dealer is com-

mitting to the polynomial and cannot change it later.
• Encrypted shares: For each player Pi, the dealer computes and publishes Yi =

y
p(i)
i , for 1 ≤ i < n. Intuitively, the dealer is taking the value p(i) of the

polynomial p at point i and encrypting it using yi so that only the i-th player
can decrypt it. This encrypted value is then published.

• Proof of correctness: The dealer provides a non-interactive zero-knowledge
proof ensuring that the encrypted shares above are valid. See [19] for details.

– Verification of the shares. Anyone on the network, be it a player Pi or a non-
participant third-party, can verify the proof and encrypted shares provided by the
dealer to ensure that the dealer is acting honestly, i.e. following the protocol above,
and not giving out invalid shares.

Reconstruction. This step consists of:
– Decryption of the shares. Each party Pi knows Yi = y

p(i)
i and their secret key

xi. Recall that yi = Gxi . Hence, the i-th party can compute Y
1/xi

i = y
p(i)/xi

i =

Gp(i). They publish Gpi along with a non-interactive zero-knowledge proof of its
correctness.

– Pooling the shares. Any t participants Pi1 , Pi2 , . . . , Pit can compute the Gr by La-
grange interpolation. More specifically, they know t points (ij , p(ij)) of the poly-
nomial p that is of degree t− 1. So, they can find the unique polynomial that goes
through these points. Note that after all the shares are decrypted, anyone on the
network can use t of the shares to compute the polynomial p and then Gr is sim-
ply p(0). However, before the decryption of the shares in the reconstruction step,



Game-theoretic Randomness for Proof-of-Stake 7

finding Gr requires the collaboration of at least t participants and no set of t − 1
participants can obtain any information about Gr. Finally, knowing Gr and U , it is
easy to find the secret s, i.e. s = U − h(Gr).

A PVSS scheme can be used to generate random numbers. To do so, we use a
separate PVSS scheme for each participant Pi. All n PVSS schemes run in parallel.
In the i-th scheme, Pi is the dealer and everyone else is a normal participant. Pi first
chooses a random number si and then performs the protocol above as the dealer. At
the end of the process, all the si’s are revealed by pooling the shares and we can use
s =

∑n
i=1 si as our random number. The upside is that no party can avoid revealing

their si and hence the protocol satisfies availability. The downside is that every set of
t parties can unmask everyone else’s choices and hence bias the result. Therefore, in
random number generation using PVSS we have to assume that there are at most t− 1
dishonest participants.

2.3 Verifiable Delay Functions

We follow [6] in our treatment of verifiable delay functions. A verifiable delay function
(VDF) is a tuple V = (Setup,Eval,Verify) parameterized by a security parameter
λ and a desired puzzle difficulty t. Suppose our input space is X and our output space
is Y . V is a triplet of algorithms as follows:

– Setup(λ, t) → (ek, vk). This function generates an evaluation key ek and a veri-
fication key vk in polynomial time with respect to λ.

– Eval(ek, x) → (y, π) takes an input x ∈ X and produces an output y ∈ Y and
a proof π. Eval may use randomness in computing the proof π but not in the
computation of y. It must run in parallel time t with poly(log(t), λ) processors.

– Verify(vk, x, y, π) → {Yes, No} is a deterministic algorithm that verifies the cor-
rectness of evaluation in sequential time poly(log(t), λ).

See [6] for more details and desired properties. Intuitively, anyone can evaluate the VDF
using the evaluation key. However, this takes a long time, i.e. at least t steps, even when
using parallelization. Even if a malicious participant has strong parallel computational
power, they cannot evaluate the VDF significantly faster than an ordinary participant
that owns only a single processor. However, after the evaluation is done, verifying the
result is easy and much faster and anyone can do the verification using the verification
key vk.

The use case of verifiable delay functions in random number generation is to again
defend against dishonest participants who do not reveal their choice in a commitment
scheme. We can require every participant to provide a VDF whose evaluation is their
choice si. Then, even if the participant is dishonest and does not reveal their own choice,
other participants can evaluate the VDF and obtain the si, hence ensuring availability
for our random number generation protocol. However, evaluation takes a long time, and
hence the choice will not be revealed while in the commit phase.

Note that both PVSS and VDF methods above can be used to ensure availability
and defend against dishonest parties who do not reveal their choices. However, they do
not incentivize the parties to be reliable and choose their si uniformly at random. This
is our main contribution in the next section.



8

3 Random Integer Generation Game (RIG)

We now provide the main component of our approach, i.e. a game to incentivize relia-
bility in random number generation.

3.1 Overview of RIG

RIG. Suppose that we have n players and n is even. A Random Integer Generation
game (RIG) with n players and m ≥ 3 strategies is a game G in which:

– For every player i ∈ {1, . . . , n}, we have m pure strategies Si = {0, 1, . . . ,m−1};
– We pair the players such that every even player is paired with the previous odd

player and every odd player is paired with the next even player. In other words,
pair(2 · k) = 2 · k − 1 and pair(2 · k − 1) = 2 · k.

– At an outcome s = (s1, s2, . . . , sn) of the game, the payoff of player i is defined
as ui(s) := f(si, sj) where j = pair(i), and

f(si, sj) :=


1 if si − sj ≡ 1 (mod m)

−1 if si − sj ≡ −1 (mod m)

0 otherwise

Essentially, we assume that any adjacent pair of even player and odd player play a zero-
sum symmetric one-shot game with each other. Their payoffs are independent of other
n− 2 players. For each pair (2 · k− 1, 2 · k) of players, this is a zero-sum matrix game
with the following payoff matrix:

A =


0 −1 0 · · · 0
1 0 −1 · · · 0
0 1 0 · · · 0
...

...
. . .

...
0 0 0 · · · 0


3.2 Analysis of Alliance-Resistant Nash Equilibria

Theorem 1. (Alliance-Resistant Nash Equilibrium of an RIG.) Let G be an RIG game
with n players and m strategies, where n is an even number and m ≥ 3. Let σ̄ be a
mixed strategy profile defined by σ̄i = (1/m, 1/m, . . . , 1/m) for all i, i.e. the mixed
strategy profile in which each player i chooses a strategy in Si uniformly at random.
Then, σ̄ is the only Nash equilibrium of G. Further, it is also alliance-resistant.

Proof. First, we prove that σ̄ is an alliance-resistant Nash Equilibrium. Under the mixed
strategy profile, the expected payoff of each one of the players is 0. Let G be a sub-
set of players, then the overall utility of all players in G is

∑
i∈G ui(σ̄−G, σ) if play-

ers in G play another strategy profile σ. Each player i is effectively playing against
its adjacent player. If both player i and player pair(i) are in G, then ui(σ̄−G, σ) =
−upair(i)(σ̄−G, σ). The utilities of these two players always sum up to zero, so that
the overall utility of G is not influenced by them. Similarly, if both player i and player
pair(i) are not in G, they do not influence the overall utility of G either. The only
non-trivial part consists of those players in G who play against players outside G. For



Game-theoretic Randomness for Proof-of-Stake 9

each such player i, since the player pair(i) plays mixed strategy σ̄pair(i), the utility is
ui = σT

i · A · σ̄pair(i) = σT
i · (0, 0, . . . , 0) = 0. Therefore, the overall utility of G is 0

and changing the strategy has no benefit.
We now prove that σ̄ is the unique Nash equilibrium of this game. Suppose there is

another strategy profile σ̃ that is also a Nash equilibrium. Then for any player i, since it
is effectively only playing with its adjacent player j = pair(i), it follows that (σ̃i, σ̃j)
forms a Nash equilibrium for the zero-sum bimatrix game defined by A.

Now consider the bimatrix game between player i and player j. Let their utility
at Nash equilibrium mixed strategy profile (σ̃i, σ̃j) be (ũi, ũj). Since it is a zero-sum
matrix game, ũi+ũj = 0. Without loss of generality, assume that ũi ≤ ũj , then ũi ≤ 0.
By the definition of Nash equilibrium, player i cannot increase its utility by changing
its strategy σ̃i to any other strategy σi, while player j keeps playing the same strategy
σ̃j . This indicates that every coordinate of the vector A · σ̃j is no more than ũi, which
is at most 0. Let σ̃j = (p0, p1, . . . , pm−1), then δk = pk − pk−2 (mod m) ≤ ũi ≤ 0,
for each k in {0, 1, . . . ,m − 1}. However,

∑m−1
k=0 δk =

∑m−1
k=0 pk −

∑m−1
k=0 pk = 0.

So it must hold that σ̃j = (1/m, 1/m, . . . , 1/m) and ũi = ũj = 0. Since ũj = 0 ≤ 0,
similar analysis can show that σ̃i = (1/m, 1/m, . . . , 1/m). This proves that σ̄ is the
only Nash equilibrium for the Random Integer Generation game.

The theorem above shows that it is in every player’s best interest to play uniformly
at random, i.e. choose each pure strategy in Si with probability exactly 1/m. Moreover,
this equilibrium is self-enforcing even in the presence of alliances. Hence, we can plug
this game into a distributed random number generation protocol and give participants
rewards that are based on their payoffs in this game. This ensures that every participant
is incentivized to provide a uniformly random si. As mentioned before, even if one
participant is reliable and submits a uniformly random si, then the entire result s =∑

si of the random number generation protocol is guaranteed to be unbiased. Hence,
instead of assuming that a reliable party exists, we incentivize every party to be reliable.

3.3 Dense RIG bimatrix game

The matrix A is sparse if the strategy size m is large, which is the case if we want
to generate integers from a large range. If the number of players is much smaller than
m, then the probability that one party really receives a non-zero payoff is negligible.
Therefore, it is desirable to design a matrix B that is dense, as well as provides the
same unique alliance-resistant equilibrium property.

For simplicity of notation, suppose m is a power of 2 and m ≥ 23 = 8. Then B is
defined such that Bi,j = g(j − i), where g(·) is defined as:

g(k) :=


1 if 1 ≤ k ≤ m/4 (mod m)

−1 if 3m/4 ≤ k ≤ m− 1 (mod m)

0 otherwise.

It is easy to check that g(−k) = −g(k), which indicates BT = −B. It is easy
to check that the mixed strategy profile σ̄ is an alliance-resistant Nash equilibrium. To
show that it is the only Nash equilibrium, we follow the analysis we did for A. Suppose
there is another Nash equilibrium (σ̃i, σ̃j) between player i and player j and ũi ≤ 0.
Let σ̃j be (p0, p1, . . . , pm−1), then every element of r = B · σ̃j is at most ũi, which is



10

non-positive. However,
∑m−1

k=0 rk = 1T · r = 1T ·B · σ̃j = 0T · σ̃j = 0, which requires
r = 0 and ũi = 0. By r = 0, we have

rs =
∑

1≤k≤m/4 pk+s −
∑

3m/4≤k≤m−1 pk+s = 0

for every s ∈ {0, 1, . . . ,m− 1}. For simplicity of notation, assume that pm+t = pt for
any integer t. If we substract rs+1 by rs, we get

ps+1+m/4 − ps+1 = ps+m − ps+3·m/4 = ps − ps−m/4

Let q(s) = ps − ps−m/4, then q(s+1+m/4) = q(s). We also have q(s+m) = q(s).
Since gcd(1+m/4,m) = 1, q(·) is constant on integers, from which we can infer that
p0 = p1 = · · · = pm−1 = 1/m. Therefore, σ̄ is still the only Nash equilibrium.
Remark. Note that simple parallelization of RIG loses the uniqueness property of Nash
equilibrium, hence we cannot simply have an RIG game for m = 2, use it to generate
a random bit, and parallelize it k times to generate k random bits. Instead, we must
set m = 2k and have a single non-parallel RIG game. As an example, consider the
simplified case of two players and m bits. If each player only uniformly randomly set
their first bit, and then copy the same bit to all other bits, then this also forms a Nash
equilibrium. However, this Nash equilibrium does not produce a uniformly random
output. Instead, the output is 0 with 50% probability and 2m − 1 with 50% probability.
More generally, any σ = (σ1, σ2) such that σi(j-th bit is 0) = 1/2 for all 1 ≤ j ≤ m
is a Nash equilibrium. The existence of these undesirable Nash equilibria breaks the
guarantee of uniformly random distribution of final output value. Hence, parallelization
should not be used and a game on 2k strategies should be played in the first place.

4 Designing a Random Beacon Based on RIG

In this section, we discuss how to use a single execution of the Random Integer Gen-
eration game in a distributed random number generation beacon. The major challenge
is to execute the game, in which the parties have to move simultaneously, in a decen-
tralized environment. We propose two schemes to implement the RIG game: (1) using
commitment schemes and verifiable delay functions, and (2) using publicly verifiable
secret sharing. We assume that the set of players is already fixed. Usually, only a small
subset of users (or blockchain miners) are selected from all the users in the system to
join a single execution of the game (generation of a random number). The selection rule
is determined by the specific application. The design and amount of reward/penalty and
deposits are also subject to the specific application. We will address these adjustable
configurations in Section 4.3. Finally, we focus on the case where our protocol is used
in conjunction with a blockchain protocol, including gossip protocols for announce-
ments.

4.1 Commitment Scheme and VDF approach

As mentioned above, commitment schemes are already widely used in random number
generation in distributed systems. As expected, our approach has two phases: commit
and reveal. The execution starts with the commit phase, which lasts for Tcommit time



Game-theoretic Randomness for Proof-of-Stake 11

slots. In a blockchain ecosystem, we can use the block number to keep track of time.
After the commit phase ends, the execution enters the reveal phase, which lasts for
Treveal time slots. The RIG game is executed when the reveal phase completes.

In the commit phase, each participant pi broadcasts a signed commit message:
(session_id, hi, proofi)i, where session_id is the session id of the execution and
hi = hash(vi|noncei) is the commitment. vi is the value the participant chooses and
noncei is a random nonce. proofi is a publicly verifiable proof that pi is an eligible par-
ticipant, applicable when only a subset of selected users are allowed to join the game.
A commit message is valid if: (1) the message is properly signed by pi, (2) the message
has a valid proof of participation, (3) there is no other different valid commit message
from pi in the network, and (4) the message is received during the commit phase.

In the reveal phase, each participant pi broadcasts a signed reveal message: (session_id, vi, noncei)i.
A reveal message is valid if (1) the message is received during the reveal phase, (2) pi
has exactly one valid commit message, and (3) hash(vi|noncei) matches the commit-
ment hi of the participant pi.

After the reveal phase completes, we can compute the payoffs of the RIG game.
We describe in subsection 4.3 the details of computing results. Assume the outcome of
the game is (s1, . . . , sn), where si ∈ {0, 1, . . . ,m − 1} is the strategy played by each
player. We set r :=

∑
si (mod m) and output it as the result of the random number

generation protocol.
The value of r can be biased by malicious participants who might choose not to

reveal their values/strategies. If a participant does not reveal the values after completing
the commit phase correctly, they will lose their deposit. However, the participant might
benefit from a biased output of the random beacon in the downstream application, for
which they might be willing to cheat even at the cost of losing the deposit. In order to
prevent this possibility of adversarial manipulation on the game result, we make use of
a verifiable delay function VDF(·) as in [6] and require the participant to provide all
necessary parameters for the evaluation of the VDF as part of the commit message. We
then check that the provided VDF really evaluates to the strategy si of the player and
otherwise, simply remove player i from the game. Of course, the VDF evaluation time
should be long enough to ensure it cannot be evaluated until the reveal phase is over.

Using this technique, any adversary cannot have any information about the final
output by the end of the reveal phase. Therefore, revealing values honestly is always a
strictly better strategy than not revealing values for all participants. The game is then
executed when all the values are revealed and all the VDFs are evaluated and it is
ensured that cheating participants are excluded.

Note that, even if v conforms to a uniformly random distribution, the output of VDF
on v is not guaranteed to be uniformly random. In existing constructions of random
beacons that rely on VDF, a hash function is applied to the output of VDF to get random
numbers, under the random oracle assumption. However, with the novel RIG game, we
can guarantee the delivery of uniformly random output values, if we define the final
output as ṽ = v1 + VDF(v2), where v1 is the higher half bits of v and v2 is the lower
half bits of v. Since v is uniformly random, then v1 and v2 are independent uniformly
random integers. Whatever distribution VDF(v2) has, the sum ṽ is a uniformly random
integer.

Finally, note that this approach works as long as at least one of the participants is
honest. So, in a proof-of-stake scenario, if we choose n participants for each random
number generation, we need to ensure that honest miners have much more than 1/n



12

fraction of the stake in the cryptocurrency, so as to ensure that at least one honest par-
ticipant is chosen with high probability. We also assume that at least one participant is
reliable, but this is already incentivized by our game.

4.2 PVSS approach

The drawback of the commitment scheme in random number generators is the possi-
bility of adversarial manipulation in the reveal phase by not revealing values. We have
already seen a solution using VDFs. A publicly verifiable secret sharing scheme solves
the same issue differently, i.e. by forcing the opening of commitments, at the cost of
increased communication complexity. We follow the PVSS scheme in [19].

An execution of the RIG game in a PVSS scheme consists of three phases: pre-
pare, distribute and reconstruct. The first phase is prepare, which lasts for Tprepare time
slots. The second phase, distribute, lasts for Tdistribute time slots and reconstruct for
Treconstruct slots.

In the prepare phase, all eligible participants inform each other that they are se-
lected. Under a synchronous communication setting, all honest participants can reach
a consensus on the list of participants. More specifically, we assume a blockchain pro-
tocol that a transaction will be added to a finalized block within known bounded time
slots after it is broadcasted. Each participant firstly broadcasts a signed prepare mes-
sage (session_id, proofi)i to announce its identity along with eligibility proof for the
current session of execution. By the end of prepare phase, all prepare messages should
be included in the blockchain and are synchronized across all nodes. Suppose the list of
participants is {Pi}ni=1.

In the distribute and reconstruct phases, each participant Pi runs a PVSS scheme
to share their value si to the other n − 1 participants. This is exactly as described
in Section 2.2. In the distribute phase, every participant should send valid (n − 1, t)-
threshold secret shares to others along with a proof of commitment and consistency.
The shares are publicly verifiable so that a dishonest participant who distributes invalid
shares can be discovered and excluded from the game. Hence, by the end of distribute
phase, all honest participants release their correct shares and receive correct shares from
other honest participants. If a dishonest participant distributes some invalid shares or
does not distribute part of the shares, they will be reported and deleted from the list of
participants. As long as the number of dishonest participants is less than t, they cannot
decrypt any secret from honest participants in the distribute phase.

In the reconstruct phase, each participant can reveal their value and share the de-
crypted secret shares they received. If the number of honest participants is at least t,
then the pooling mechanism is successful and anyone can find all the secrets from valid
secret shares, without the help of any dishonest participant. The dishonest participants
cannot mislead honest participants by providing wrong decryption of secret shares in
reconstruction, because the decryption for reconstruction also requires a publicly veri-
fiable proof.

Suppose the number of dishonest participants is f . PVSS requires f < t ≤ n − f .
Therefore, we can assume that n ≥ 2 ·f +1 and let t = ⌈n/2⌉. In other words, we need
to assume that more than half of the participants are honest. In a proof-of-stake use case,
the set of participants for each execution are sampled from the population of miners
based on their stake. If we want n ≥ 2 · f + 1 to hold with overwhelming probability,
then the dishonest stake ratio should be strictly smaller than 1/2 and preferably much



Game-theoretic Randomness for Proof-of-Stake 13

smaller. Moreover, n should not be too small. In other words, this approach assumes
that most of the stake, strictly more than half and preferably much more than half, is
owned by honest participants. This is in contrast to the previous approach that only
needed more than 1/n.

4.3 Further Details of the Approach

Participant Selection rules. Proof-of-stake blockchain protocols are important appli-
cations of random beacons. To prevent Sybil attacks and enforce proof-of-stake, it is
common to sample a small subset of participants based on stake ratios for the random
beacon. Verifiable random functions (VRF)[14] are popular for the purpose of selecting
participants. VRF requires a random seed, which can be the output of RIG game in the
previous round. Similar to the treatment for VDF outputs to ensure uniformly random
distribution, we can also use the trick of separating the bits of the random seed r to two
parts r1 and r2 and using r1 + V RF (r2) instead of V RF (r).
Sorting rules. In contrast to RANDAO and many other random number generators, our
RIG game is sensitive to the order of participants. The result of the RIG game is not only
the output value, which is the sum of all valid values submitted by the participants, but
also the payoffs. The honest participants who reveal their values faithfully might receive
different rewards/penalties depending on the ordering of participants. As before, we can
use the output of the previous RIG round to generate a random ordering for the current
round. Finally, the RIG game requires an even number of participants, so if the number
of valid participants is odd, we will remove one participant arbitrarily. To make sure
this does not have an effect on consensus, we can remove the participant for whom
h(commit message) has the largest value.
Design of the Incentives. Every participant puts down a deposit d at the same time they
send their commit message. The value of d is fixed by the protocol. After collecting
all the valid values si and ordering of the participants Pi, i ∈ [1, n], the result has the
format (s, {Pi, ui}), where ui is the payoff of participant Pi. The values s, si are in
{0, 1, . . . ,m}, where m is a parameter of RIG game, i.e. the number of strategies for
each player. The output random number is computed as s =

∑n
i=1 si (mod m). Note

that all dishonest players are excluded from the sum. If a player does not release their
value or otherwise cheats, then they will be punished by confiscating their deposit and
they will not be included in the game. Each honest participant Pi receives a payoff of
the form ri = ui(s1, . . . , sn) + c. Recall that ui(s1, . . . , sn) is the payoff of Pi defined
by the game matrix, which sums up to 0 among valid participants. The number c is a
constant defined by the specific application. Generally, c should be positive and high
enough to motivate honest participants to join the RIG game and perform its steps.
When we require the participants to use blockchain transactions for communication, c
should at least cover the transaction fees. The deposit amount d should also be larger
than any reward that a participant can possibly obtain in the game in order to discourage
dishonest behavior.

4.4 Assumptions and Limits to Applicability

Network Assumptions. The most important assumptions are the network assumptions.
Our RIG game relies on a synchronous communication network. All real-world blockchain
networks use the internet and are effectively synchronous.



14

δ-synchrony. A broadcast network is δ-synchronous if a message broadcasted by some
user at time t will be received by all other users by time t+ δ.

When applied to blockchains, blockchain consensus protocols guarantee public ledgers
with different levels of synchrony. In this paper, we rely on blockchain consensus
protocols to achieve a synchronized view of RIG execution. In detail, we require ∆-
synchrony for blockchains:
∆-synchronous blockchains. A blockchain is ∆-synchronous if any valid transaction
broadcasted by some user at time t will become part of the stable chain at time t +∆
in the view of all honest nodes.

We assume that ∆ is known to all nodes and use it to design the duration of com-
mitment scheme approach and PVSS approach. Specifically, in the commitment scheme
approach we must have: (i) Tcommit, Treveal > ∆; and (ii) Twait > TEval. After the re-
veal phase ends, each participant requires extra Twait time slots to compute the final out-
put. Similarly, in the PVSS approach we must have Tprepare, Tdistribute, Treconstruct >
∆.

If the PVSS approach is implemented using off-chain communication, then we can
derive lower bounds for the durations in terms of δ. In any case, the approach will not
work if the network/blockchain is not synchronous or if the time limits are too tight and
messages are not guaranteed to be delivered before the beginning of the next phase.
Rationality Assumption. We proved that any rational party or parties, i.e. a party/parties
interested only in maximizing their own payoff, would play uniformly at random in an
RIG game and would therefore be reliable. This is because playing uniformly at random
is the only alliance-resistant equilibrium in the game. Moreover, the uniformity of the
output random number depends on having at least one reliable player. Therefore, we
must assume that at least one player is rational and our approach would not work if
none of the players are rational. However, this case is unlikely to happen in practice as
we would normally expect all parties to be rational.

5 RIG in Proof of Stake Protocols

We now show how our RIG random beacon can supplant standard PoS protocols. In
general, the RIG random beacon, be it implemented by the commitment scheme ap-
proach or the PVSS approach, is applicable to any PoS protocol that requires an evolv-
ing random seed to select miners. Overall, using our RIG as the source of randomness
only introduces negligible overhead in terms of transaction throughput.

If we use the RIG random beacon for generating the random seed in a proof-of-stake
protocol, a single execution of the RIG game updates the random seed once. Usually,
a single execution spans an epoch, which consists of multiple slots where the same
random seed is repeatedly used. The blockchain protocol is modified to consecutively
run the RIG random beacon to update the random seed in every epoch. The participants
of RIG random beacon of each epoch are randomly selected, e.g. based on the RIG
result of the previous epoch. Note that our approach can also be applied for every block,
instead of every epoch, but this would require more communication complexity.

5.1 RIG in Ouroboros Praos
Ouroboros Praos is the second proof-of-stake protocol in the Ouroboros family and
the underlying protocol of Cardano cryptocurrency [9]. Ouroboros Praos assumes a ∆-



Game-theoretic Randomness for Proof-of-Stake 15

semisynchronous broadcast network, where ∆ is a finite bound on the delay of messages
unknown to the nodes of the blockchain. Ouroboros Praos also assumes that the adver-
sarial stake ratio is strictly smaller than 50%. Ouroboros Praos satisfies persistence with
parameter k and liveness with parameter u = 8 · k/(1 + ϵ) with high probability [9].
Thus, our 8 ·k/(1+ϵ)-synchronous blockchain assumption holds with high probability.

The selection rule for random seed generation participants in Ouroboros Praos is
based on a VRF. The random beacon concatenates the VRF output of the participants
and applies a random oracle hash function on the concatenated output. Each partici-
pant is also a miner and announces their VRF output along with their new block. The
generated random seed is used in the next epoch, which consists of a number of slots.
The protocol waits for enough slots until the seed generation is synchronized among all
participants for the next epoch.

We can substitute the random beacon of Ouroboros Praos with our RIG. For ex-
ample, if we use the commitment scheme approach, we can reuse the VRF selection
rule and epoch/slot timing system. The major difference is that the execution of RIG
consists of two phases of communication. Therefore, it requires Treveal + Twait more
slots within an epoch to reach a consensus on the result of RIG. Besides, we improve
the VRF selection using the split randomness trick to ensure uniformly random sam-
pling, instead of pseudo-random sampling. In Cardano, 1 epoch lasts for 5 days, and
the transaction confirmation time is 20 minutes. When using the commitment scheme,
we require more time (<= 3× transaction confirmation time) within an epoch for the
extra reveal phase and VDF computation time to reach a consensus on the result of RIG,
which is negligible.

5.2 RIG in Algorand

Algorand [11] executes a byzantine agreement protocol for every block to ensure per-
sistence with parameter 1 and liveness within 1 minute, assuming δ-synchrony for 95%
honest users. The no-fork and one-minute-liveness properties guarantee a one-minute-
synchronous blockchain for RIG random beacon. Algorand assumes that honest users
hold more than two-thirds of the total stake, which satisfies the requirement of the PVSS
implementation of RIG.

Algorand requires an evolving random seed for VRF-based selection of miners and
Byzantine agreement protocols. The random seed is updated every R rounds by apply-
ing the VRF of the current miner to the previous random seed and the current epoch
number. This is again pseudo-random and there is no guarantee that the output is uni-
formly distributed. We can use our RIG random beacon to generate the random seeds
for Algorand. If we use on-chain communication in the PVSS approach, then we have
to select the participants of RIG separately from the committee for each single round,
because we want the participants of RIG to be active for multiple slots (Tprepare +
Tdistribute + Treconstruct slots) without obstructing the growth of blockchain. Each
single execution of the RIG spans the duration of an epoch, which consists of R rounds.
Algorand reaches consensus within 1 round, and updates the random seed once ev-
ery 1000 rounds, which is sufficient for a PVSS execution. Moreover, assuming that
R = 1000 and 100 participants join the RIG game, using RIG decreases the transaction-
per-second by less than 1%.

The execution of the RIG random beacon is parallel to other parts of Algorand.
While other parts require an evolving random seed from the RIG random beacon, they



16

can reuse the previous random seed until a new seed is computed and synchronized.
Compared to the random seed updating procedure in Algorand, our RIG random beacon
is bias-resistant and rules out the possibility of adversarial manipulation on the random
seed assuming the selected participants satisfy the assumption of honest majority.

6 Conclusion

We presented a game-theoretic beacon for distributed random number generation. We
showed that our approach is bias-resistant, unpredictable, available, verifiable and in-
centivizes every participant to be reliable, i.e. provide a truly uniform random input.
Even if only one of the participants is rational and reliable, the output number is guar-
anteed to be unbiased. Additionally, our approach does not use pseudo-randomness at
any point and instead only relies on well-incentivized game-theoretic randomness.

References
1. RANDAO: A DAO working as RNG of Ethereum (2019), https://github.com/randao/randao
2. Cambridge bitcoin electricity consumption index (2022), https://ccaf.io/cbeci/index
3. Arnosti, N., Weinberg, S.M.: Bitcoin: A natural oligopoly. Management Science pp. 4755–

4771 (2022)
4. Aumann, R.J.: 16. Acceptable Points in General Cooperative n-Person Games, pp. 287–324.

Princeton University Press (2016)
5. Bernheim, B., Peleg, B., Whinston, M.D.: Coalition-proof nash equilibria i. concepts. Journal

of Economic Theory pp. 1–12 (1987)
6. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In: CRYPTO. pp.

757–788 (2018)
7. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: OSDI. pp. 173–186 (1999)
8. Chatterjee, K., Goharshady, A.K., Pourdamghani, A.: Probabilistic smart contracts: Secure

randomness on the blockchain. In: ICBC. pp. 403–412 (2019)
9. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros praos: An adaptively-secure, semi-

synchronous proof-of-stake blockchain. In: CRYPTO. pp. 66–98 (2018)
10. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and keys. In: PKC.

pp. 416–431 (2005)
11. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: Scaling Byzantine

agreements for cryptocurrencies. In: SOSP. pp. 51–68 (2017)
12. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: A provably secure proof-of-

stake blockchain protocol. In: CRYPTO. pp. 357–388 (2017)
13. Krasnoselskii, M., Melnikov, G., Yanovich, Y.: No-dealer: Byzantine fault-tolerant random

number generator. In: INFOCOM. pp. 568–573 (2020)
14. Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable random functions. In: FOCS. pp. 120–130

(1999)
15. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Decentralized Business Re-

view p. 21260 (2008)
16. Nash, J.: Non-cooperative games. Annals of Mathematics pp. 286–95 (1951)
17. Roughgarden, T., Nisan, N.: Algorithmic Game Theory. Cambridge University Press (2007)
18. Schindler, P., Judmayer, A., Stifter, N., Weippl, E.R.: Hydrand: Efficient continuous dis-

tributed randomness. In: SP. pp. 73–89 (2020)
19. Schoenmakers, B.: A simple publicly verifiable secret sharing scheme and its application to

electronic voting. In: CRYPTO. pp. 148–164 (1999)
20. Syta, E., Jovanovic, P., Kokoris-Kogias, E., Gailly, N., Gasser, L., Khoffi, I., Fischer, M.J.,

Ford, B.: Scalable bias-resistant distributed randomness. In: SP. pp. 444–460 (2017)
21. Wang, G., Nixon, M.: Randchain: Practical scalable decentralized randomness attested by

blockchain. In: IEEE Blockchain. pp. 442–449 (2020)


