
Incentive Schemes for Rollup Validators

Anonymous

March 31, 2023

Abstract

We design and analyze attention games that incentivize validators to
check computation results. We show that no pure strategy Nash equilib-
rium of the game without outside parties exists by a simple argument. We
then proceed to calculate the security of the system in the mixed Nash
equilibrium, as a function of the number of validators and their stake
sizes. Our results provide lower and upper bounds on the optimal number
of validators, as well as on the optimum stake sizes, to achieve sufficient
security of the system. More concretely, a minimal feasible number of
validators minimizes the probability of failure. In the end, we discuss
optimal design of rewards by the protocol for validators.

1 Introduction

Decentralized systems, such as blockchains, rely on validators to compute and
verify the state of the system. Validators are rational players that provide a ser-
vice when the right incentives are in place: they are rewarded for correct behav-
ior and punished for misbehavior. Blockchains have successfully implemented
these incentives. The validators stake some amount of (blockchain native) to-
kens and earn rewards if they provide validation service. If they misbehave,
there are two ways they get punished. First, directly, by slashing stakes. Sec-
ond, indirectly: if the system loses security, it causes the validator stake to be
devalued or even stolen.

There are still many remaining questions. We study some of them in this
paper, in a setting where a single honest and active validator is necessary for
security. We ask a question of exactly how many validators are required for a
high enough security level of the system, and what their stake sizes should be.
Our model and insights are general enough to be applied to a broad class of
decentralized systems, but they are best suited to optimistic rollup protocols.
In these protocols, heavy computation is delegated outside of the base layer
protocol to layer two protocols, and only claims on intermediate states are made
on the base layer. This is where active validation becomes important. If one
party, typically one of the validators, wrongly claims a state of the system, other
validators are supposed to challenge and prove that the claim is wrong. A single
honest validator is enough to disprove a wrong claim.

1



In the first part of the paper, we study a game where validators obtain
rewards only when they find false claims made by other (malicious) validators.
In the context of optimistic rollups, only one honest validator which checks
computation results is enough to detect and prevent malicious attackers’ efforts.
The malicious asserter can make a false claim that allows all assets at the rollup
to be stolen if all validators fail to challenge it. This is why long periods for a
challenge are given. Successful attacks are subtler on the base blockchains, as
they also devalue stolen assets if they are in the native tokens, however, in the
rollups the deployed assets are not native and therefore, not devalued.

We first consider a game in which the behavior of players is completely based
on economic incentives. In particular, there are no social norms and the payoffs
of the players are not affected by the system designer injecting money into the
system. The reward a validator might receive is paid by another validator that
made a false claim about the system state. This way the game is similar to the
so-called multi-player zero-sum game. The difference with the zero-sum game,
however, is that if the malicious validator succeeds with a false claim, it may
obtain a much higher payoff than what the rest of the validators lose.

In this model, we argue that a pure strategy equilibrium does not exist, and
therefore, we focus on mixed strategy equilibrium. In this solution concept, we
calculate the probability of the system failure, which should serve as an upper
bound on the system security expected if there are only rational players. In
reality, we expect the system to be more secure because there are altruistic
players and some players may also care about their reputation.

In the second part, we allow rewards to validators without detecting false
claims. To achieve this, validators are required to post their checking results
on-chain with some probability. To be able to figure out if posting is needed,
validators need to compute the state of the system fully. If the probability of
posting is high enough, validators are incentivized to do computation all the
time, hence, pure strategy equilibrium is obtained. They are rewarded when
they correctly post about the state of the world, the amount which compensates
for their past checking efforts as well.

Related Literature

The question of correctly incentivizing validators in blockchain settings is not
recent, see [5], where the problem is referred to as the verifier’s dilemma. A
closely related paper to ours is [6]. The difference between our approaches is that
in [6] validators (data providers) are not explicitly rewarded for their service.
Instead, the authors look at only punishing strategies to incentivize the right
behavior. Also, they consider pure strategy Nash equilibria solutions. [3] studies
a similar question of how to design a bug-searching committee. The paper
studies the question of the optimal number of searchers and reward policies,
given a fixed budget. [2] studies blockchain security through the lenses of game
theory, in particular, how to design a sharing of validation rewards. However,
in this model, the costs of validation differ across validators. Another related
paper is [4], where costs of validation differ, and the authors look at the problem

2



of validation delegation, another way of earning through rewards. Game theory
and security literature have a big intersection, some papers relating these two
in the context of multi-party computation settings as well, see [1].

2 Model

We first consider the simplest case of two validators, which we sometimes refer
to as players. One of them is playing the role of the Asserter and the other
playing the role of the Checker. This setting corresponds to the system with
two validators. Most of the parameters are defined in the game with two players,
denoted by G2 and later used for a more general setting with n players. The
roles of players are specified in the following:

• The Asserter makes a claim about the state of a system that is either true
or false. The state of the system is a result of a computation of a state
transition function, that is fed a stream of incoming transactions.

• The Checker can check the claim made by the Asserter, at some compu-
tational cost. The Checker has the option to challenge the claim.

The Asserter’s action set consists of false and true claims. The Checker’s
action set consists of checking and not checking.

The following is a list of the parameters of the game that define the final
utilities of the players.

• C: the cost of checking. Here we refer to the cost of checking each claim
about the state of the system. Claims arrive in a regular rate. We ignore
the sunk costs of setting up the validator node. After such node is set
up, the validator runner pays only server costs. Node software that does
a check of the claim is typically available for validators of the rollup sys-
tems. Therefore, it is safe to assume that they incur homogenous costs of
checking.

• R: the Checker’s reward for discovering a false claim, which is taken from
the Asserter and given to the Checker. In practice, only a fraction of
the reward is given to a Checker and the rest is burnt. This is done
in order to avoid situations where both validators are controlled by the
same malicious player. In such a case this malicious player does not lose
any deposit by rising false assertion and losing the challenge to itself.
However, in the analysis, we assume that validators are not controlled by
the same player and the mechanism is budget balanced: what one player
loses goes to another player. The analysis does not change and results
are the same asymptotically if we assume burning some fraction of the
Asserter’s deposit.

• L: the Checker’s loss if cheating goes undetected. L does not have to be
equal to R. It can be a stake validators have locked for being a validator.
However, by the design of a challenge mechanism, L is at most R.

3



• U : is the Asserter’s gain if cheating goes undetected. It can be thought
of as the full assets locked in the protocol, sometimes referred to as total
value locked (TVL). This interpretation of the value is most suited to
rollup protocols.

strategy false (π) true (1− π)
check (α) R− C,−R −C, 0
don’t check (1− α) −L, U 0,0

The table above represents G2 game in the normal form, given in a bimatrix
format. The first number is the final utility (payoff) of the Checker, the second
number is the utility of the Asserter. The Checker is sometimes referred as a
row player and the Asserter – a column player.

We make a mild assumption on the parameters:

Assumption 1. Assume that the Checker does not have a dominant strategy,
that is, R− C > −L, equivalent to C < R+ L.

The condition is intuitive: if the cost of checking is too high, the Checker
never checks. A common goal is to minimize the probability of a system failure,
denoted by F (C,L,R,U). That is, the probability that a false claim is intro-
duced by the Asserter and the Checker does not check it. Note that the Asserter
does not have a dominant strategy, given the assumption. Since the Checker
does not have a dominant strategy, we can only have a totally mixed equilibrium
game. In the following, we compute it. We consider mixed strategies for both
players. For the Asserter, strategies can be characterized by the probability π
that the chosen action (claim) is false. With probability 1−π the claim is true.
For the Checker, the mixed strategy is characterized by the probability α that
the Checker checks. With probability 1− α, the Checker does not check.

Proposition 1. The probability of failure is increasing in the cost of checking
C and decreasing in the TVL U .

Proof. We can now calculate equilibrium probabilities α and π, using indiffer-
ence conditions. The indifference condition for the Checker is that the expected
utility of playing ”check” is equal to the expected utility of playing ”don’t
check”. That is,

π(R− C) + (1− π)(−C) = π(−L), (1)

equivalent to

π =
C

R+ L
(2)

The indifference condition for the Asserter is that the expected utility of
playing ”false” is equal to the expected utility of playing ”true”. That is,

0α+ 0(1− α) = (−R)α+ U(1− α), (3)

4



equivalent to

α =
U

R+ U
. (4)

By plugging in the equilibrium values of π and α, we obtain:

F (C,L,R,U) := π(1− α) =
CR

(R+ L)(R+ U)
. (5)

It is obvious to see that F (C,L,R,U) is decreasing in increasing U .

If the rollup has a higher value, it is less likely to fail in the equilibrium.
The explanation is simple: a higher value of the rollup protocol makes it more
attractive for a malicious Asserter to try to make a false claim to transfer all
value to itself, but this on the other hand gives more motivation to the Checker
to check, as it is earning on finding a false claim. In light of this, another value
of interest is the expected loss of the system F (C,L,R,U)U . This value is
increasing in U , and converges to CR

R+L as U tends to infinity.
Note that, by (4), α is decreasing in increasing R. This sounds counterin-

tuitive – a larger reward for the checker discovering a false claim makes it less
likely that the checker will check for a false claim – but actually, it is not. Even
though higher R should increase the incentive of the Checker to check, and all
else being equal it does, it also decreases the probability π that the Asserter in-
troduces a false claim, which on its own decreases the incentive for the Checker
to check. That is, the recommendation is that increasing R is not the solution
to maximize checking probability. Consider a derivative of F (C,L,R,U) as a
function of R.

dF

dR
=

C(R+ L)(R+ U)− CR(R+ L+R+ U)

(R+ L)2(R+ U)2
=

CUL− CR2

(R+ U)2(R+ L)2
. (6)

Solving dF
dR = 0 gives R =

√
UL. Therefore, when R < R∗ :=

√
UL, LHS

of (6) is positive and when R > R∗, then it is negative. That is, the probability
is decreasing in R above R∗, and should be taken as high as possible.

Note a few observations on F , from the formula (5). First, F is minimized
at R = 0. It implies that a false claim comes for free, therefore, the Asserter
tries a false claim all the time, and the Checker checks all the time, as the cost
of checking is less than the punishment for not checking: C < L. This would be
a desirable solution, but each false claim delays finality, and therefore, harms
the system. Therefore, in optimizing the parameter sets, we also care about π,
which is maximized by taking R = 0. One immediate takeaway from the (2)
formula is that if we want to minimize π, we need to increase L and R.

For decreasing π, we need to increase L, equivalent to disincentivizing the
Checker to stay idle, causing the Asserter to introduce a false claim less often,
and to decrease R, equivalent to incentivizing the Asserter to introduce the false
claim more often and, therefore, causing the Checker to check more often.

5



Note that α = 1 for any R is achievable if the Asserter commits to introduce
the false claim with a certain minimum probability: π > C

R+L . However, this
can not be sustained in equilibrium: the Checker always checks as it has positive
utility, while the Asserter has strictly negative utility: −π ·R. It is not rational
for the Asserter. It can only be supported as a solution if, for example, the
protocol designer plays the role of the Asserter and posts wrong claims with a
probability more than the bound C

R+L .
One potential goal a system designer can have is to optimize social welfare,

in which the costs of validating and a fraction of the stakes are subtracted
from the success probability times TVL. The first cost is obvious - the cost
of (duplicate) checking is lost for the validator. The second, opportunity cost,
is incurred by the validators by staking their assets in the validation system
instead of earning interest outside. The system designer has to minimize the
following target function:

M := fUπ + Uπ(1− α) + αC + r(L+R), (7)

where f denotes the relative loss of the system when there is a delay and r
is a potential return on investment outside the system. f is typically assumed
to be a low number, say 10−2. Plugging in the values for π and α gives an
equivalent equation to (7):

M = f
C

R+ L
+

C

R+ L

R

R+ U
=

C

R+ L

(
f +

R

R+ U

)
+

U

U +R
C + r(L+R).

(8)
The optimum values of R and L minimizing M can be computed by taking

partial derivatives of M with respect to R and L.

2.1 Extension to n validators

In this section, we assume that there are n+1 validators. One of the validators
is an Asserter, in each assertion round. We want to incentivize the validators to
check claims often enough. In each round, the Asserter makes a claim, and the
validators can check it. If they check and find the false claim, they do not get
slashed if they post a challenge to the false claim. If they check and find out
that the claim is true, they do not need to post anything. That is, not posting
anything can mean two things: the validator checked and found out the claim
is true, or the validator did not check and that is why there is no post. There
are two ways to implement the payoff to the players in the protocol:

1. Simultaneous: every validator posts, if they want to post, at the end of a
predefined time interval. This approach is simpler to analyze, and for the
players, it is simpler to make a decision.

2. Sequential: The validators see what other validators have done so far. If
nobody posts anything this may motivate them not to post anything, but

6



that increases the chances that someone will post a fraud-proof at the last
second and slash the silent validators.

For simplicity of exposition, we focus on the simultaneous model in this
paper. That is, the validators see only at the end of the round how many
posted checks. Homogenous costs of checking among validators is a natural
assumption in the setting of rollups, as there is available software for running a
validator node and standard hardware requirements.

If no validator detects a false claim, the Asserter proceeds with the false
claim, and all validators are punished by losing all their deposited stake – L –
and the Asserter can steal all value on the chain, giving it payoff U .

We consider a fully mixed symmetric equilibrium of this game. Similarly to
the case with two players, the probability that each validator checks is denoted
by α, and the probability the Asserter claims a false claim is denoted by π. The
timeline of the events is the following:

• If m out of n validators find a false claim and post about it, they are paid
equally: R

m .

• the other n−m validators are slashed sw, which we assume to be (much)
smaller than L.

The probability that at least one out of n validators will check is equal to

Ps,α(n) := 1− (1− α)n.

Note that in this definition α is an independent parameter, however, in the
equilibrium it depends on n. Similarly to (1), we derive the indifference condi-
tion for the validator. Shortly, it is EU[check] = EU[don’t check], where EU[X]
stands for expected utility from taking a certain action X. The condition can
be translated as:

π

(
n−1∑
i=0

(
n− 1

i

)
αi(1− α)n−1−i R

i+ 1

)
+ (1− π)0− C = (9)

π(Ps,α(n− 1)(−sw) + (1− Ps,α(n− 1))(−L)) + (1− π)0. (10)

The first summand on the left-hand side (LHS) represents the product of
the probability that the claim is false, the probability that i other validators
check and (expected) rewards R/(i+1), as there are i+1 validators finding the
false claim.

The second summand on the LHS is a product of the probability that the
claim is true with 0, while the last represents the minus cost of checking.

The first summand of the right-hand side (RHS) represents the product
of the probability that the claim is false, the product of the probability that
someone else checks with −sw.

7



The second summand of RHS is a product of the probability that nobody
checks with −L, while the third summand is a product of the probability that
the claim is true with 0.

The indifference condition can be further simplified to:

π

(
n−1∑
i=0

(
n− 1

i

)
αi(1− α)n−1−i R

i+ 1

)
−C = π(Ps,n−1(−sw)+(1−Ps,n−1)(−L)).

(11)
First, we show the following lemma:

Lemma 1. For n ∈ N and x ̸= 0,

n∑
k=0

(
n

k

)
xkyn−k

k + 1
=

1

n+ 1

(x+ y)n+1 − yn+1

x
. (12)

Proof of 1. Note that
(
n
k

)
1

k+1 =
(
n+1
k+1

)
1

n+1 . Then,

n∑
k=0

(
n

k

)
xkyn−k

k + 1
=

1

n+ 1

n∑
k=0

(
n+ 1

k + 1

)
xkyn−k =

1

n+ 1

1

x

n∑
k=0

(
n+ 1

k + 1

)
xk+1y(n+1)−(k+1)

=
1

n+ 1

1

x

[
n+1∑
k=0

(
n+ 1

k

)
xky(n+1)−k) − yn+1

]

=
1

n+ 1

(x+ y)n+1 − yn+1

x
.

The lemma implies simplification:

n−1∑
i=0

(
n− 1

i

)
αi(1− α)n−1−i R

i+ 1
= R

1− (1− α)n

nα
. (13)

Similarly to (3), the indifference condition of the Asserter is EU[false claim]
= EU[true claim]. The LHS is the sum of the product of the probability that
some validator checks with −R and the product of the probability that no
validator checks with U . The RHS is equal to 0. The condition simplifies to:

(1− (1− α)n)R = (1− α)nU. (14)

From the condition, we obtain a solution for α:

α = 1− R

R+ U

1/n

.

RHS of (13) further simplifies to:

8



R
1− (1− α)n

nα
=

UR

(R+ U)nα
.

Plugging in α in the equation (11) and taking into account (13) derives π:

π =
C

UR
(U+R)nα + Ps,α(n− 1)sw + (1− Ps,α(n− 1))L

. (15)

The main value of interest as in the case with 2 players is Ps,α(n). It is
obtained by solving the Asserter’s indifference condition (14) and is equal to

U
R+U . That is, it does not depend on the number of validators n. The second
value of interest is π, as π(1 − Ps,α(n)) is the probability that the false claim
will go through unnoticed. Note that π is decreasing in increasing sw and
L. That is, for decreasing the probability that the Asserter is introducing the
false claim, and therefore, decreasing the total probability the false claim goes
through unnoticed, we need to increase the slashed stakes of the validators. To
find out the optimum number of validators, we obtain the following result:

Proposition 2. All else being equal, π is increasing with increasing n.

This result suggests a recommendation to rollup systems: n should be as
low as possible. On the other hand, n > 1 might still be needed, for example,
to avoid some validators being down for some time.

Suppose f validators go offline for a technical reason. What happens to the
probability that the system functions well? We calculate this probability in the
equilibrium. It is equal to Ps,α(n − f). In the following, we give a numerical
example.

Example 1. In this example, we consider realistic values of parameters. Sup-
pose C is normalized to 1 (dollar), which is a reasonable approximation of one
round computation costs, U = 109 corresponding to the TVL, R = 106 corre-
sponding to a stake that an asserting validator needs to commit and L = 105

corresponding to a stake an active validator needs to commit. The probability

of failure is minimized when n = 1 and it is equal to 106

(106+105)(109+106) ≈ 10−9.

Now assume that n = 12. Then the probability each validator checks, α, is ap-
proximately equal to 0.4377, and the probability of a false claim is approximately
equal to 3.448 · 10−6 and the probability of failure equals to 3.445 · 10−6. When
f = 2, the probability of failure equals to 0.343 ·10−6. The driving force of these
(good) results is that π is very low. The other multiplier, the probability that
one of the validators will check, has a lower effect on the result. The following
table shows approximate values of α and π for n ≤ 12. Note that the probability
all validators will fail to catch false claim, in that case, is (1 − α)n = R

U+R ,

independent of n, and approximately equal to 10−3.

9



n α π
1 0.999 9.09e− 07
2 0.968 1.92e− 06
3 0.900 2.69e− 06
4 0.822 3.28e− 06
5 0.748 3.74e− 06
6 0.683 4.10e− 06
7 0.627 4.39e− 06
8 0.578 4.62e− 06
9 0.535 4.82e− 06
10 0.498 4.98e− 06
11 0.466 5.13e− 06
12 0.437 5.25e− 06

Note that if the adversarial Asserter can approach and corrupt f out of n
validators, it changes the solution concept significantly. Corrupting even one
validator allows the malicious Asserter to deviate in the equilibrium and post
the false claim with probability one, as the expected payoff from a false claim
is strictly larger than the expected payoff from a correct claim.

2.2 Silent validators

In this section, we assume the existence of ”silent” validators. They do not
stake anything, unlike active validators, but can access the base layer contract
after each claim and challenge the (false) claim of the Asserter, in case active
validators did not do so. A successful claim by a silent validator allows it to
collect all stakes – nL and the Asserter’s deposit R. This gives more incentive
to the staked validators to check.

To get an intuition, we start with the smallest instance. Assume there
there is one active and one silent validator. The indifference condition of the
active validator stays the same as in the case without silent validators, as the
active validator loses its deposit if the Asserter’s claim is false. The indifference
condition of the silent validator, on the other hand, is:

π(1− α)R = C. (16)

The expected gains for the silent validator is (1−α)R, as the active validator
finds the false claim with probability α.

Plugging in π = C
R+L gives a contradiction, the LHS is always higher than

the RHS. This implies that the silent validator never checks in the equilibrium.
The same holds even if we add the active validator’s deposit to the reward of a
silent validator. The indifference condition in this case becomes:

π(1− α)(R+ L) = C. (17)

However, the mechanics change when we consider more than 1 active valida-
tor. The role of a silent validator can be played by the Asserter as well. That is,

10



instead of stealing all the money of the system, it may only collect nL and allow
the system to survive. Suppose there are m silent validators. The indifference
condition of such a validator is different from the staked validator, as it does
not risk losing stake if it does not check. On the other hand, if silent valida-
tor checks while no staked validator does, it will be rewarded both by staked
validator stakes – nL – and the dishonest Asserter’s stake R. Silent validators
have the same cost of checking, C. By a similar argument as with only active
validators, it is easy to show that there is no pure Nash equilibrium solution to
the game. The proof is by contradiction: if one of the validator types checked
with certainty, it would make malicious Asserter not make a false claim, causing
validators not to check. Therefore, we again consider a totally mixed Nash equi-
librium solution. The probability that the silent validator plays the checking
strategy is β. Then, the indifference condition for the silent validator is:

C = π(1− (1− α)n)

m−1∑
i=0

((
m− 1

i

)
βi(1− βm−1−i)

R+ nL

i+ 1

)
. (18)

The indifference condition for active validator is the same as (11), as for this
type of validator it does not matter what silent validators will do. If there is
a false claim and active validators do not find it, they will lose all their stakes.
For completeness, we state the condition here:

π

(
n−1∑
i=0

(
n− 1

i

)
αi(1− α)n−1−i R

i+ 1

)
−C = π(Ps,α(n−1)(−sw)+(1−Ps,α(n−1))(−L)).

(19)
The indifference condition for the malicious Asserter is:

(1−(1−α)n)(1−(1−β)m)R = ((1−α)n+(1−β)m−(1−α)n(1−β)m)U. (20)

Analyzing indifference conditions (18), (19) and (20) gives conditions on the
parameters when totally mixed equilibrium of the game exists. Consider, for
example, m = 2 and n = 1. The indifference conditions become:

C = πα(R+ 2L), C = π(R+ L), (2α− α2)βR = (1− (2α− α2)β)U.

This solves α = R+L
R+2L , β = U

(2α−α2)(R+U) and π = C
R+L . That is, α needs to

be high enough, to make sure that β is smaller than 1. When α is low enough,
then it must be that β = 1. That is, silent validators always check.

3 Protocol level incentives

In this section, we ask the question of how to reward validators for checking (and
posting about) the true claim 1. The post, a transaction to a smart contract

1For a similar discussion for Ethereum validator incentivization
see https://dankradfeist.de/ethereum/2021/09/30/proofs-of-custody.html.

11



at the base layer network does not need to include a proof. This approach
allows obtaining a pure strategy equilibrium, in which all validators check with
certainty. This guarantees that a false claim is found with probability one.
However, it comes at a cost of adding new functionality to the protocol, which
is usually not desirable.

Similar to the previous section, there are n + 1 validators. The probability
that each one needs to post about checking the state of the world is denoted by
P . The validators need to take a decision whether to check or not before they
find out whether they need to post about the result. In case they fail to post
when they are required to post, they have slashed their stakes L. The cost of
checking is C, as before. The cost of posting is c, which is typically assumed
to be less than C. The opportunity cost of staking on the platform is rL in
each round. Therefore, r denotes the return on investment outside the system
in one round. The payment validators receive for posting the right outcome is
denoted by p. Then, the expected payoff is equal to −C + P (−c+ p) when the
validator checks, or P (−L) when the validator does not check. To guarantee
that the validator checks in equilibrium, the expected payoff of checking needs
to be larger than the expected payoff of not checking:

−C + P (−c+ p) > P (−L).

This gives a condition on P , namely P > C
p−c+L =: πl.

The expected budget of the protocol per round is equal to nPp, which is
lower bounded by nπlp = nCp

p−c+L . Note that taking a high enough L lowers

the expected cost of the system to guarantee incentive compatibility (IC), but
it increases the cost to guarantee individual rationality (IR). The latter means
that validators want to be a part of the system in the first place, instead of
staying away and obtaining zero utility. To guarantee IR, we need to offset the
opportunity cost the validator incurs by staking L, which equals rL. Since by
IC, the validator always checks, we need that −C + P (−c + p) > rL, that is,
P > C+rL

p−c =: πr. This simplifies to the condition that π needs to be larger than

max(πc, πr). The minimum value of π is achieved at the minimax. One function
is decreasing in L, another is increasing. The minimax is achieved when they
are equal. That is,

C + rL

p− c
=

C

p− c+ L
,

implying L = rc−rp−C
r (which is negative, therefore, not possible) or L = 0.

This optimization is done for fixed p. We can minimize P and Pp over p as
well. Plugging in L = 0 into the formula of P gives: P = C

p−c . It is minimized

for p as large as possible. Similarly, pP = Cp
p−c is minimized for p as large as

possible. The value approaches C, which is intuitive:

1. the system pays exactly the cost of checking on average,

2. it checks the validators with very low probability,

3. but when they are checked - the system pays a very large amount p.

12



Unless there is some cost associated with high payment p for the protocol to
upper bound it, there is no tradeoff. However, such costs are obvious. The pro-
tocol cannot invest an arbitrarily high amount at once in rewarding validators.

Implementation

We present the implementation of attaching a message of checking and posting
with some probability to an assertion. The sampling can be done on the protocol
level, by referring to state relevant hash values. Suppose the Asserter is making
a claim about the value of f(x) for some function f which is common knowledge,
and a value x which varies across different runs of the protocol. We want to
pose a randomly generated challenge to the validator, such that the checker
must know f(x) in order to respond correctly to the challenge. Then we can
punish the validator for responding incorrectly.

The validator has a private key k, with a corresponding public key gk which
is common knowledge (g is a suitable generator of a group where the Diffie-
Hellman problem is hard). To issue a challenge for the computation of f(x),
the asserter generates a random value r, then publishes (x, gr) as a challenge.
A validator who has private key k should respond to the challenge by posting a
tiny transaction on-chain if and only if H(grk, f(x)) < T where H is a suitable
hash function and T is a suitably chosen threshold value.

Note that only the Asserter (who knows r) and the validator (who knows k)
will be able to compute the hash because they are the only two parties who can
compute grk. Note also that computing the hash requires knowledge of f(x).
After the validator(s) have had a window of time to post their response(s) to
the challenge, the Asserter can post its claimed f(x) which will be subject to
challenge if any validator disagrees with it.

At this time, the Asserter can accuse any validator who responded incor-
rectly: the Asserter must publish r to substantiate its accusation. If the As-
serter’s claimed value of f(x) is later confirmed, a smart contract can verify the
accusation and punish the misbehaving validator (if the Asserter’s claimed f(x)
is rejected, the Asserter’s accusation is ignored).

If any funds are seized from validators, the Asserter gets half of the seized
funds and the remainder is burned. One way to build this in the rollup is to
have assertions, rather than revealing the state root f(x). Instead, include an
attention challenge (x, gr, H(x, gr, f(x))), which is also a binding commitment
to f(x), and only reveal f(x) when there is a challenge, or when the assertion is
confirmed. Validators could self-identify and stake, and they would have until
the confirmation time of the assertion to post their response to the attention
challenge.

4 Conclusions and future work

We initiate a study of the optimal number of validators and their stake sizes
in the rollup protocols. The main result is that for higher system security

13



guarantees, the cost of checking should be low, TVL should be high and the
number of validators should be as low as possible. We also derive optimal
validation and assertion deposits. Future avenues of research include weighted
staking. Even if such staking is not allowed, if one validator creates multiple
identities, but checks only once, it results in weighted staking. Such validator’s
indifference condition is different from the others, as it has invested kL tokens,
where k is a number of identities.

References

[1] Gilad Asharov, Ran Canetti, and Carmit Hazay. Towards a game theoretic
view of secure computation. In Kenneth G. Paterson, editor, Advances in
Cryptology - EUROCRYPT 2011 - 30th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Tallinn, Estonia,
May 15-19, 2011. Proceedings, volume 6632 of Lecture Notes in Computer
Science, pages 426–445. Springer, 2011.

[2] Lars Brünjes, Aggelos Kiayias, Elias Koutsoupias, and Aikaterini-Panagiota
Stouka. Reward sharing schemes for stake pools. In IEEE European Sym-
posium on Security and Privacy, EuroS&P 2020, Genoa, Italy, September
7-11, 2020, pages 256–275. IEEE, 2020.

[3] Hans Gersbach, Akaki Mamageishvili, and Fikri Pitsuwan. Decentralized
attack search and the design of bug bounty schemes. Working Paper, 2023.

[4] Hans Gersbach, Akaki Mamageishvili, and Manvir Schneider. Staking pools
on blockchains. CoRR, abs/2203.05838, 2022.

[5] Loi Luu, Jason Teutsch, Raghav Kulkarni, and Prateek Saxena. Demys-
tifying incentives in the consensus computer. In Indrajit Ray, Ninghui Li,
and Christopher Kruegel, editors, Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, Denver, CO, USA,
October 12-16, 2015, pages 706–719. ACM, 2015.

[6] Ertem Nusret Tas and Dan Boneh. Cryptoeconomic security for data avail-
ability committees. Forthcoming at Financial Cryptography, 2023.

14


